plot.py 11.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
20
from __future__ import absolute_import, division, print_function
from ..compat import *
Martin Reinecke's avatar
Martin Reinecke committed
21
import numpy as np
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
22
from ..import Field, RGSpace, HPSpace, GLSpace, PowerSpace, dobj
Martin Reinecke's avatar
Martin Reinecke committed
23
24
25
26
27
28
29
30
31
32
import os

# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
33
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
34

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
35

Martin Reinecke's avatar
Martin Reinecke committed
36
37
38
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
39
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    xc = (xsize-1)*0.5
    yc = (ysize-1)*0.5
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
    u = 2*(u-xc)/(xc/1.02)
    v = (v-yc)/(yc/1.02)

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
54

Martin Reinecke's avatar
Martin Reinecke committed
55
56
57
58
59
60
61
62
63
def _find_closest(A, target):
    # A must be sorted
    idx = A.searchsorted(target)
    idx = np.clip(idx, 1, len(A)-1)
    left = A[idx-1]
    right = A[idx]
    idx -= target - left < right - target
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
64

Martin Reinecke's avatar
Martin Reinecke committed
65
def _makeplot(name):
66
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
67
    if dobj.rank != 0:
68
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
69
        return
Martin Reinecke's avatar
Martin Reinecke committed
70
71
    if name is None:
        plt.show()
72
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
73
74
        return
    extension = os.path.splitext(name)[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
75
    if extension == ".pdf":
Martin Reinecke's avatar
Martin Reinecke committed
76
77
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
78
    elif extension == ".png":
Martin Reinecke's avatar
Martin Reinecke committed
79
80
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
81
82
83
84
85
86
87
88
89
90
    # elif extension==".html":
        # import mpld3
        # mpld3.save_html(plt.gcf(),fileobj=name,no_extras=True)
        # import plotly.offline as py
        # import plotly.tools as tls
        # plotly_fig = tls.mpl_to_plotly(plt.gcf())
        # py.plot(plotly_fig,filename=name)
        # py.plot_mpl(plt.gcf(),filename=name)
        # import bokeh
        # bokeh.mpl.to_bokeh(plt.gcf())
Martin Reinecke's avatar
Martin Reinecke committed
91
92
93
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
94

Martin Reinecke's avatar
Martin Reinecke committed
95
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
96
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
97
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
98
99
100
101
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
102
103
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
104

Martin Reinecke's avatar
Martin Reinecke committed
105
106
107
108
109
110
111
112
113
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
160
161
162

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
163
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
164
165
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
166
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
167

Martin Reinecke's avatar
Martin Reinecke committed
168

Martin Reinecke's avatar
Martin Reinecke committed
169
def plot(f, **kwargs):
170
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
171
    _register_cmaps()
172
173
174
    if isinstance(f, Field):
        f = [f]
    if not isinstance(f, list):
Martin Reinecke's avatar
Martin Reinecke committed
175
        raise TypeError("incorrect data type")
176
177
178
179
180
181
182
183
184
185
186
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
            if len(dom) != 1:
                raise ValueError("input field must have exactly one domain")
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
            if not (isinstance(dom[0], PowerSpace) or
187
                    (isinstance(dom[0], RGSpace) and len(dom[0].shape) == 1)):
188
                raise ValueError("PowerSpace or 1D RGSpace required")
Martin Reinecke's avatar
Martin Reinecke committed
189

clienhar's avatar
clienhar committed
190
    label = kwargs.pop("label", None)
Martin Reinecke's avatar
Martin Reinecke committed
191
192
    if label is None:
        label = [None] * len(f)
193
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
194
195
        label = [label]

clienhar's avatar
clienhar committed
196
    linewidth = kwargs.pop("linewidth", None)
Philipp Arras's avatar
Philipp Arras committed
197
    if linewidth is None:
Martin Reinecke's avatar
Martin Reinecke committed
198
        linewidth = [1.] * len(f)
Philipp Arras's avatar
Philipp Arras committed
199
200
201
    if not isinstance(linewidth, list):
        linewidth = [linewidth]

clienhar's avatar
clienhar committed
202
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
203
204
205
206
207
    if alpha is None:
        alpha = [None] * len(f)
    if not isinstance(alpha, list):
        alpha = [alpha]

208
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
209
    fig = plt.figure()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
210
    ax = fig.add_subplot(1, 1, 1)
Martin Reinecke's avatar
Martin Reinecke committed
211

clienhar's avatar
clienhar committed
212
213
    xsize = kwargs.pop("xsize", 6)
    ysize = kwargs.pop("ysize", 6)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
214
    fig.set_size_inches(xsize, ysize)
clienhar's avatar
clienhar committed
215
216
217
218
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
Martin Reinecke's avatar
Martin Reinecke committed
219
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
220
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
221
222
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
223
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
224
            for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
225
                ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
226
227
                plt.plot(xcoord, ycoord, label=label[i],
                         linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
228
            _limit_xy(**kwargs)
229
230
            if label != ([None]*len(f)):
                plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
231
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
232
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
233
        elif len(dom.shape) == 2:
234
            f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
235
236
237
238
            nx = dom.shape[0]
            ny = dom.shape[1]
            dx = dom.distances[0]
            dy = dom.distances[1]
Philipp Arras's avatar
Philipp Arras committed
239
240
            xc = np.arange(nx, dtype=np.float64)*dx
            yc = np.arange(ny, dtype=np.float64)*dy
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
241
            im = ax.imshow(fld.to_global_data(),
Martin Reinecke's avatar
Martin Reinecke committed
242
                           extent=[xc[0], xc[-1], yc[0], yc[-1]],
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
243
                           vmin=kwargs.get("zmin"),
Martin Reinecke's avatar
Martin Reinecke committed
244
                           vmax=kwargs.get("zmax"), cmap=cmap, origin="lower")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
245
246
247
248
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
249
            plt.colorbar(im)
Martin Reinecke's avatar
Martin Reinecke committed
250
251
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
252
253
254
255
256
            return
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
        plt.title('power')
Philipp Arras's avatar
Philipp Arras committed
257
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
258
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
259
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
260
261
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
262
        _limit_xy(**kwargs)
263
264
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
265
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
266
267
        return
    elif isinstance(dom, HPSpace):
268
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
269
270
271
272
273
274
275
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)

        ptg = np.empty((phi.size, 2), dtype=np.float64)
        ptg[:, 0] = theta
        ptg[:, 1] = phi
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
276
277
        base = pyHealpix.Healpix_Base(int(np.sqrt(f.size//12)), "RING")
        res[mask] = f.to_global_data()[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
278
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
279
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
280
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
281
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
282
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
283
284
        return
    elif isinstance(dom, GLSpace):
285
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
286
287
288
289
290
291
292
293
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
        ra = np.linspace(0, 2*np.pi, dom.nlon+1)
        dec = pyHealpix.GL_thetas(dom.nlat)
        ilat = _find_closest(dec, theta)
        ilon = _find_closest(ra, phi)
        ilon = np.where(ilon == dom.nlon, 0, ilon)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
294
        res[mask] = f.to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
295
296

        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
297
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
298
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
299
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
300
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
301
302
303
        return

    raise ValueError("Field type not(yet) supported")