sugar.py 9.77 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

19
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
20
21
from .domains.structured_domain import StructuredDomain
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
Martin Reinecke committed
22
23
24
from .field import Field, sqrt
from .operators.diagonal_operator import DiagonalOperator
from .operators.power_projection_operator import PowerProjectionOperator
25
from .operators.harmonic_transform_operator import HarmonicTransformOperator
Martin Reinecke's avatar
Martin Reinecke committed
26
27
from .domain_tuple import DomainTuple
from . import dobj, utilities
28

Martin Reinecke's avatar
Martin Reinecke committed
29
30
__all__ = ['PS_field',
           'power_analyze',
31
           'power_synthesize',
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
32
           'power_synthesize_nonrandom',
33
           'create_power_field',
34
           'create_power_operator',
35
           'create_composed_ht_operator',
36
           'create_harmonic_smoothing_operator']
37
38


Martin Reinecke's avatar
Martin Reinecke committed
39
40
41
42
43
44
def PS_field(pspace, func, dtype=None):
    if not isinstance(pspace, PowerSpace):
        raise TypeError
    data = dobj.from_global_data(func(pspace.k_lengths))
    return Field(pspace, val=data, dtype=dtype)

Martin Reinecke's avatar
Martin Reinecke committed
45

46
47
48
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
    ppo = PowerProjectionOperator(field.domain, power_domain, idx)
49
    return ppo(field.weight(1)).weight(-1)  # divides by bin size
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66


def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
    """ Computes the square root power spectrum for a subspace of `field`.

    Creates a PowerSpace for the space addressed by `spaces` with the given
    binning and computes the power spectrum as a Field over this
    PowerSpace. This can only be done if the subspace to  be analyzed is a
    harmonic space. The resulting field has the same units as the initial
    field, corresponding to the square root of the power spectrum.

    Parameters
    ----------
    field : Field
        The field to be analyzed
    spaces : int *optional*
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
67
        The set of subspaces for which the powerspectrum shall be computed.
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        (default : None).
    binbounds : array-like *optional*
        Inner bounds of the bins (default : None).
        if binbounds==None : bins are inferred.
    keep_phase_information : boolean, *optional*
        If False, return a real-valued result containing the power spectrum
        of the input Field.
        If True, return a complex-valued result whose real component
        contains the power spectrum computed from the real part of the
        input Field, and whose imaginary component contains the power
        spectrum computed from the imaginary part of the input Field.
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
    out : Field
        The output object. Its domain is a PowerSpace and it contains
        the power spectrum of 'field'.
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
92
93
            dobj.mprint("WARNING: Field has a space in `domain` which is "
                        "neither harmonic nor a PowerSpace.")
94

95
    spaces = utilities.parse_spaces(spaces, len(field.domain))
96
97
98
99

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

100
101
102
103
    field_real = not np.issubdtype(field.dtype, np.complexfloating)
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

104
105
106
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
107
108
109
110
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
111
112
113
114
115
116
117
118
119
120

    for space_index in spaces:
        parts = [_single_power_analyze(field=part,
                                       idx=space_index,
                                       binbounds=binbounds)
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
121
def power_synthesize_nonrandom(field, spaces=None):
122
    spaces = utilities.parse_spaces(spaces, len(field.domain))
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

    result_domain = list(field.domain)
    spec = sqrt(field)
    for i in spaces:
        result_domain[i] = field.domain[i].harmonic_partner
        ppo = PowerProjectionOperator(result_domain, field.domain[i], i)
        spec = ppo.adjoint_times(spec)

    return spec


def power_synthesize(field, spaces=None, real_power=True, real_signal=True):
    """ Yields a sampled field with `field`**2 as its power spectrum.

    This method draws a Gaussian random field in the harmonic partner
    domain of this field's domains, using this field as power spectrum.

    Parameters
    ----------
    field : Field
        The input field containing the square root of the power spectrum
    spaces : {tuple, int, None} *optional*
        Specifies the subspace containing all the PowerSpaces which
        should be converted (default : None).
        if spaces==None : Tries to convert the whole domain.
    real_power : boolean *optional*
        Determines whether the power spectrum is treated as intrinsically
        real or complex (default : True).
    real_signal : boolean *optional*
        True will result in a purely real signal-space field
        (default : True).

    Returns
    -------
    out : Field
        The output object. A random field created with the power spectrum
        stored in the `spaces` in `field`.

    Notes
    -----
    For this the spaces specified by `spaces` must be a PowerSpace.
    This expects this field to be the square root of a power spectrum, i.e.
    to have the unit of the field to be sampled.

    Raises
    ------
    ValueError : If domain specified by `spaces` is not a PowerSpace.
    """

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
172
    spec = power_synthesize_nonrandom(field, spaces)
173
174
175
    self_real = not np.issubdtype(spec.dtype, np.complexfloating)
    if (not real_power) and self_real:
        raise ValueError("can't draw complex realizations from real spectrum")
176
177
178
179
180

    # create random samples: one or two, depending on whether the
    # power spectrum is real or complex
    result = [field.from_random('normal', mean=0., std=1.,
                                domain=spec.domain,
Martin Reinecke's avatar
Martin Reinecke committed
181
182
                                dtype=np.float64 if real_signal
                                else np.complex128)
183
184
              for x in range(1 if real_power else 2)]

185
    result[0] *= spec if self_real else spec.real
186
187
188
189
190
191
    if not real_power:
        result[1] *= spec.imag

    return result[0] if real_power else result[0] + 1j*result[1]


192
def create_power_field(domain, power_spectrum, dtype=None):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
193
194
195
196
197
198
199
200
201
202
203
    if not callable(power_spectrum):  # we have a Field living on a PowerSpace
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
        fp = Field(power_domain, val=power_spectrum.val, dtype=dtype)
    else:
        power_domain = PowerSpace(domain)
Martin Reinecke's avatar
Martin Reinecke committed
204
        fp = PS_field(power_domain, power_spectrum, dtype)
205

206
    return PowerProjectionOperator(domain, power_domain).adjoint_times(fp)
207

208

Martin Reinecke's avatar
Martin Reinecke committed
209
def create_power_operator(domain, power_spectrum, space=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
210
    """ Creates a diagonal operator with the given power spectrum.
211

212
    Constructs a diagonal operator that lives over the specified domain.
213

214
215
216
    Parameters
    ----------
    domain : DomainObject
217
        Domain over which the power operator shall live.
Martin Reinecke's avatar
Martin Reinecke committed
218
219
220
221
    power_spectrum : callable of Field
        An object that implements the power spectrum as a function of k.
    space : int
            the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
222
    dtype : type *optional*
223
        dtype that the field holding the power spectrum shall use
Theo Steininger's avatar
Theo Steininger committed
224
225
226
        (default : None).
        if dtype == None: the dtype of `power_spectrum` will be used.

227
228
    Returns
    -------
Theo Steininger's avatar
Theo Steininger committed
229
    DiagonalOperator : An operator that implements the given power spectrum.
230
    """
Martin Reinecke's avatar
Martin Reinecke committed
231
232
    domain = DomainTuple.make(domain)
    if space is None:
Martin Reinecke's avatar
Martin Reinecke committed
233
        if len(domain) != 1:
Martin Reinecke's avatar
Martin Reinecke committed
234
235
236
237
            raise ValueError("space keyword must be set")
        else:
            space = 0
    space = int(space)
238
    return DiagonalOperator(
Martin Reinecke's avatar
Martin Reinecke committed
239
        create_power_field(domain[space], power_spectrum, dtype),
Martin Reinecke's avatar
Martin Reinecke committed
240
241
        domain=domain,
        spaces=space)
242

243

244
245
246
247
248
def create_composed_ht_operator(domain, codomain=None):
    if codomain is None:
        codomain = [None]*len(domain)
    res = None
    for i, space in enumerate(domain):
Martin Reinecke's avatar
Martin Reinecke committed
249
        if isinstance(space, StructuredDomain) and space.harmonic:
250
251
252
253
254
255
256
257
            tdom = domain if res is None else res.target
            op = HarmonicTransformOperator(tdom, codomain[i], i)
            res = op if res is None else op*res
    if res is None:
        raise ValueError("empty operator")
    return res


258
259
260
261
def create_harmonic_smoothing_operator(domain, space, sigma):
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)