distributed_do.py 11.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import numpy as np
from .random import Random
from mpi4py import MPI

comm = MPI.COMM_WORLD
ntask = comm.Get_size()
rank = comm.Get_rank()


def shareSize(nwork, nshares, myshare):
    nbase = nwork//nshares
    return nbase if myshare>=nwork%nshares else nbase+1
Martin Reinecke's avatar
Martin Reinecke committed
13
14
15
16
17
18
def shareRange(nwork, nshares, myshare):
    nbase = nwork//nshares;
    additional = nwork%nshares;
    lo = myshare*nbase + min(myshare, additional)
    hi = lo+nbase+ (1 if myshare<additional else 0)
    return lo,hi
19

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
20
def local_shape(shape, distaxis):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
21
22
    if len(shape)==0:
        distaxis = -1
23
24
25
26
27
28
29
30
31
    if distaxis==-1:
        return shape
    shape2=list(shape)
    shape2[distaxis]=shareSize(shape[distaxis],ntask,rank)
    return tuple(shape2)

class data_object(object):
    def __init__(self, shape, data, distaxis):
        """Must not be called directly by users"""
Martin Reinecke's avatar
Martin Reinecke committed
32
        self._shape = tuple(shape)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
33
34
        if len(self._shape)==0:
            distaxis = -1
35
        self._distaxis = distaxis
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
36
        lshape = local_shape(self._shape, self._distaxis)
37
38
39
40
41
42
43
44
45
46
47
48
49
        self._data = data

    def sanity_checks(self):
        # check whether the distaxis is consistent
        if self._distaxis<-1 or self._distaxis>=len(self._shape):
            raise ValueError
        itmp=np.array(self._distaxis)
        otmp=np.empty(ntask,dtype=np.int)
        comm.Allgather(itmp,otmp)
        if np.any(otmp!=self._distaxis):
            raise ValueError
        # check whether the global shape is consistent
        itmp=np.array(self._shape)
Martin Reinecke's avatar
Martin Reinecke committed
50
        otmp=np.empty((ntask,len(self._shape)),dtype=np.int)
51
52
        comm.Allgather(itmp,otmp)
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
53
            if np.any(otmp[i,:]!=self._shape):
54
55
56
57
58
59
60
                raise ValueError
        # check shape of local data
        if self._distaxis<0:
            if self._data.shape!=self._shape:
                raise ValueError
        else:
            itmp=np.array(self._shape)
Martin Reinecke's avatar
Martin Reinecke committed
61
62
            itmp[self._distaxis] = shareSize(self._shape[self._distaxis],ntask,rank)
            if np.any(self._data.shape!=itmp):
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
                raise ValueError

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
79
        return data_object(self._shape, self._data.real, self._distaxis)
80
81
82

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
83
        return data_object(self._shape, self._data.imag, self._distaxis)
84

Martin Reinecke's avatar
Martin Reinecke committed
85
    def _contraction_helper(self, op, mpiop, axis):
86
87
88
89
        if axis is not None:
            if len(axis)==len(self._data.shape):
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
90
91
            res = np.array(getattr(self._data, op)())
            if (self._distaxis==-1):
Martin Reinecke's avatar
Martin Reinecke committed
92
                return res[0]
Martin Reinecke's avatar
Martin Reinecke committed
93
            res2 = np.empty(1,dtype=res.dtype)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
94
            comm.Allreduce(res,res2,mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
95
            return res2[0]
96
97

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
98
99
100
101
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
            comm.Allreduce(res,res2,mpiop)
            return from_global_data(res2, distaxis=0)
102
        else:
Martin Reinecke's avatar
Martin Reinecke committed
103
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
104
105
106
107
108
109
110
111
112
113
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
                return from_global_data(res,distaxis=0)
            shp = list(res.shape)
            shift=0
            for ax in axis:
                if ax<self._distaxis:
                    shift+=1
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
114
115
116
117
118
119
120
121
122
123

        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
        else:
            return data_object(data)

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
124
125
126
127
128
129
130
131
    # FIXME: to be improved!
    def mean(self):
        return self.sum()/self.size
    def std(self):
        return np.sqrt(self.var())
    def var(self):
        return (abs(self-self.mean())**2).mean()

132
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
133
        a = self
134
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
135
            b = other
136
137
138
139
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
140
141
            a = a._data
            b = b._data
142
        else:
Martin Reinecke's avatar
Martin Reinecke committed
143
            a = a._data
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
            b = other

        tval = getattr(a, op)(b)
        return self if tval is a else data_object(self._shape, tval, self._distaxis)

    def __add__(self, other):
        return self._binary_helper(other, op='__add__')

    def __radd__(self, other):
        return self._binary_helper(other, op='__radd__')

    def __iadd__(self, other):
        return self._binary_helper(other, op='__iadd__')

    def __sub__(self, other):
        return self._binary_helper(other, op='__sub__')

    def __rsub__(self, other):
        return self._binary_helper(other, op='__rsub__')

    def __isub__(self, other):
        return self._binary_helper(other, op='__isub__')

    def __mul__(self, other):
        return self._binary_helper(other, op='__mul__')

    def __rmul__(self, other):
        return self._binary_helper(other, op='__rmul__')

    def __imul__(self, other):
        return self._binary_helper(other, op='__imul__')

    def __div__(self, other):
        return self._binary_helper(other, op='__div__')

    def __rdiv__(self, other):
        return self._binary_helper(other, op='__rdiv__')

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
182
183
184
    def __idiv__(self, other):
        return self._binary_helper(other, op='__idiv__')

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def __truediv__(self, other):
        return self._binary_helper(other, op='__truediv__')

    def __rtruediv__(self, other):
        return self._binary_helper(other, op='__rtruediv__')

    def __pow__(self, other):
        return self._binary_helper(other, op='__pow__')

    def __rpow__(self, other):
        return self._binary_helper(other, op='__rpow__')

    def __ipow__(self, other):
        return self._binary_helper(other, op='__ipow__')

    def __eq__(self, other):
        return self._binary_helper(other, op='__eq__')

    def __ne__(self, other):
        return self._binary_helper(other, op='__ne__')

    def __neg__(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
207
        return data_object(self._shape,-self._data,self._distaxis)
208
209

    def __abs__(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
210
        return data_object(self._shape,np.abs(self._data),self._distaxis)
211

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
212
213
    #def ravel(self):
    #    return data_object(self._data.ravel())
214

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
215
216
    #def reshape(self, shape):
    #    return data_object(self._data.reshape(shape))
217
218
219
220
221
222
223
224

    def all(self):
        return self._data.all()

    def any(self):
        return self._data.any()


Martin Reinecke's avatar
Martin Reinecke committed
225
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
226
    return data_object(shape, np.full(local_shape(shape, distaxis), fill_value, dtype), distaxis)
227
228


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
229
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
230
    return data_object(shape, np.empty(local_shape(shape, distaxis), dtype), distaxis)
231
232


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
233
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
234
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype), distaxis)
235
236


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
237
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
238
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype), distaxis)
239
240
241
242
243
244
245


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
246
247
248
    tmp = np.vdot(a._data.ravel(), b._data.ravel())
    res = np.empty(1,dtype=type(tmp))
    comm.Allreduce(tmp,res,MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
249
    return res[0]
250
251
252
253
254
255
256


def _math_helper(x, function, out):
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
257
        return data_object(x.shape,function(x._data),x._distaxis)
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283


def abs(a, out=None):
    return _math_helper(a, np.abs, out)


def exp(a, out=None):
    return _math_helper(a, np.exp, out)


def log(a, out=None):
    return _math_helper(a, np.log, out)


def sqrt(a, out=None):
    return _math_helper(a, np.sqrt, out)


def bincount(x, weights=None, minlength=None):
    if weights is not None:
        weights = weights._data
    res = np.bincount(x._data, weights, minlength)
    return data_object(res)


def from_object(object, dtype=None, copy=True):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
284
    return data_object(object._shape, np.array(object._data, dtype=dtype, copy=copy), distaxis=object._distaxis)
285
286


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
287
def from_random(random_type, shape, dtype=np.float64, distaxis=0, **kwargs):
288
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
289
290
291
    #lshape = local_shape(shape, distaxis)
    #return data_object(shape, generator_function(dtype=dtype, shape=lshape, **kwargs), distaxis=distaxis)
    return from_global_data(generator_function(dtype=dtype, shape=shape, **kwargs), distaxis=distaxis)
292

Martin Reinecke's avatar
Martin Reinecke committed
293
294
295
296
def local_data(arr):
    return arr._data


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
297
298
299
300
def ibegin(arr):
    res = [0] * arr._data.ndim
    res[arr._distaxis] = shareRange(arr._shape[arr._distaxis],ntask,rank)[0]
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
301
302


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
303
304
305
306
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
    comm.Allreduce(arr,res,MPI.SUM)
    return res
Martin Reinecke's avatar
Martin Reinecke committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325


def distaxis(arr):
    return arr._distaxis


def from_local_data (shape, arr, distaxis):
    return data_object(shape, arr, distaxis)


def from_global_data (arr, distaxis=0):
    if distaxis==-1:
        return data_object(arr.shape, arr, distaxis)
    lo, hi = shareRange(arr.shape[distaxis],ntask,rank)
    sl = [slice(None)]*len(arr.shape)
    sl[distaxis]=slice(lo,hi)
    return data_object(arr.shape, arr[sl], distaxis)


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
326
327
328
329
330
331
332
def to_global_data (arr):
    if arr._distaxis==-1:
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
def redistribute (arr, dist=None, nodist=None):
    if dist is not None:
        if nodist is not None:
            raise ValueError
        if dist==arr._distaxis:
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
        dist=-1
        for i in range(len(arr.shape)):
            if i not in nodist:
                dist=i
                break
Martin Reinecke's avatar
Martin Reinecke committed
349

Martin Reinecke's avatar
Martin Reinecke committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    if arr._distaxis==-1:  # just pick the proper subset
        return from_global_data(arr._data, dist)
    if dist==-1: # gather data
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
        slabsize=np.prod(tmp.shape[1:])*tmp.itemsize
        sz=np.empty(ntask,dtype=np.int)
        for i in range(ntask):
            sz[i]=slabsize*shareSize(arr.shape[arr._distaxis],ntask,i)
        disp=np.empty(ntask,dtype=np.int)
        disp[0]=0
        disp[1:]=np.cumsum(sz[:-1])
        tmp=tmp.flatten()
        out = np.empty(arr.size,dtype=arr.dtype)
        comm.Allgatherv(tmp,[out,sz,disp,MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
364
365
366
367
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
368
369
370
        out = np.moveaxis(out, 0, arr._distaxis)
        return from_global_data (out, distaxis=-1)
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
371
372
373
    # temporary slow, but simple solution
    return redistribute(redistribute(arr,dist=-1),dist=dist)

Martin Reinecke's avatar
Martin Reinecke committed
374
375
376
377
378
379
    tmp = np.moveaxis(arr._data, (dist, arr._distaxis), (0, 1))
    tshape = tmp.shape
    slabsize=np.prod(tmp.shape[2:])*tmp.itemsize
    ssz=np.empty(ntask,dtype=np.int)
    rsz=np.empty(ntask,dtype=np.int)
    for i in range(ntask):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
380
381
        ssz[i]=shareSize(arr.shape[dist],ntask,i)*tmp.shape[1]*slabsize
        rsz[i]=shareSize(arr.shape[dist],ntask,rank)*shareSize(arr.shape[arr._distaxis],ntask,i)*slabsize
Martin Reinecke's avatar
Martin Reinecke committed
382
383
384
385
386
387
388
    sdisp=np.empty(ntask,dtype=np.int)
    rdisp=np.empty(ntask,dtype=np.int)
    sdisp[0]=0
    rdisp[0]=0
    sdisp[1:]=np.cumsum(ssz[:-1])
    rdisp[1:]=np.cumsum(rsz[:-1])
    tmp=tmp.flatten()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
389
    out = np.empty(np.prod(local_shape(arr.shape,dist)),dtype=arr.dtype)
Martin Reinecke's avatar
Martin Reinecke committed
390
391
392
393
394
395
396
397
398
399
400
    s_msg = [tmp, (ssz, sdisp), MPI.BYTE]
    r_msg = [out, (rsz, rdisp), MPI.BYTE]
    comm.Alltoallv(s_msg, r_msg)
    new_shape = [shareSize(arr.shape[dist],ntask,rank), arr.shape[arr._distaxis]] +list(tshape[2:])
    out=out.reshape(new_shape)
    out = np.moveaxis(out, (0, 1), (dist, arr._distaxis))
    return from_local_data (arr.shape, out, dist)


def default_distaxis():
    return 0