rg_space.py 8.09 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
32
from builtins import range
Martin Reinecke's avatar
Martin Reinecke committed
33
from functools import reduce
Marco Selig's avatar
Marco Selig committed
34
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
35
from ..space import Space
csongor's avatar
csongor committed
36

Marco Selig's avatar
Marco Selig committed
37

Theo Steininger's avatar
Theo Steininger committed
38
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
39
40
41
42
43
44
45
46
47
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

Theo Steininger's avatar
Theo Steininger committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        Parameters
        ----------
        shape : {int, numpy.ndarray}
            Number of grid points or numbers of gridpoints along each axis.
        distances : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis
            (default: None).
            If distances==None:
                if harmonic==True, all distances will be set to 1
                if harmonic==False, the distance along each axis will be
                  set to the inverse of the number of points along that
                  axis.
        harmonic : bool, *optional*
        Whether the space represents a grid in position or harmonic space.
Theo Steininger's avatar
Theo Steininger committed
62
            (default: False).
Marco Selig's avatar
Marco Selig committed
63
64
65

        Attributes
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
66
        harmonic : bool
Theo Steininger's avatar
Theo Steininger committed
67
68
            Whether or not the grid represents a position or harmonic space.
        distances : tuple of floats
69
70
71
72
73
74
75
76
77
            Distance between two grid points along the correponding axis.
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
Theo Steininger's avatar
Theo Steininger committed
78

Marco Selig's avatar
Marco Selig committed
79
80
    """

81
82
    # ---Overwritten properties and methods---

Martin Reinecke's avatar
Martin Reinecke committed
83
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
84
        super(RGSpace, self).__init__()
85

Martin Reinecke's avatar
Martin Reinecke committed
86
        self._harmonic = bool(harmonic)
87
88
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
Marco Selig's avatar
Marco Selig committed
89

90
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
91
92
        return ("RGSpace(shape=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.distances, self.harmonic))
93

94
95
96
97
98
99
100
101
102
103
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
Martin Reinecke's avatar
Martin Reinecke committed
104
        return int(reduce(lambda x, y: x*y, self.shape))
105
106
107
108
109
110
111
112

    @property
    def total_volume(self):
        return self.dim * reduce(lambda x, y: x*y, self.distances)

    def copy(self):
        return self.__class__(shape=self.shape,
                              distances=self.distances,
Martin Reinecke's avatar
Martin Reinecke committed
113
                              harmonic=self.harmonic)
114

115
116
117
    def scalar_weight(self):
        return reduce(lambda x, y: x*y, self.distances)

118
119
    def weight(self):
        return reduce(lambda x, y: x*y, self.distances)
120

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
121
    def get_distance_array(self):
Theo Steininger's avatar
Theo Steininger committed
122
123
        """ Calculates an n-dimensional array with its entries being the
        lengths of the vectors from the zero point of the grid.
124

Theo Steininger's avatar
Theo Steininger committed
125
126
        Returns
        -------
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
127
128
        numpy.ndarray
            An array containing the distances.
Theo Steininger's avatar
Theo Steininger committed
129

130
        """
Theo Steininger's avatar
Theo Steininger committed
131

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
132
133
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
134
135
136
137
138
139
140
141
142
143
144
        res = np.arange(self.shape[0], dtype=np.float64)
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
            return res
        res *= res
        for i in range(1, len(self.shape)):
            tmp = np.arange(self.shape[i], dtype=np.float64)
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
        return np.sqrt(res)
145

Martin Reinecke's avatar
Martin Reinecke committed
146
    def get_unique_distances(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
147
148
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
Martin Reinecke's avatar
Martin Reinecke committed
166
            tmp = self.get_distance_array().unique()  # expensive!
Martin Reinecke's avatar
Martin Reinecke committed
167
168
169
170
171
172
173
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

174
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
175
176
        if (not self.harmonic):
            raise NotImplementedError
Theo Steininger's avatar
Theo Steininger committed
177
        return lambda x: np.exp(-2. * np.pi*np.pi * x*x * sigma*sigma)
178

Martin Reinecke's avatar
Martin Reinecke committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    def get_default_codomain(self):
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
        if not np.all(
            np.absolute(np.array(self.shape) *
                        np.array(self.distances) *
                        np.array(codomain.distances) - 1) < 1e-7):
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

203
204
205
206
    # ---Added properties and methods---

    @property
    def distances(self):
Theo Steininger's avatar
Theo Steininger committed
207
208
209
        """Distance between two grid points along each axis. It is a tuple
        of positive floating point numbers with the n-th entry giving the
        distances of grid points along the n-th dimension.
210
        """
Theo Steininger's avatar
Theo Steininger committed
211

212
213
214
215
216
217
218
219
220
221
222
223
        return self._distances

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
224
                temp = np.ones_like(self.shape, dtype=np.float64)
225
            else:
Martin Reinecke's avatar
Martin Reinecke committed
226
                temp = 1 / np.array(self.shape, dtype=np.float64)
227
        else:
Martin Reinecke's avatar
Martin Reinecke committed
228
            temp = np.empty(len(self.shape), dtype=np.float64)
229
230
            temp[:] = distances
        return tuple(temp)