rg_space.py 6.71 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18
19

from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20
from builtins import range
Martin Reinecke's avatar
Martin Reinecke committed
21
from functools import reduce
Marco Selig's avatar
Marco Selig committed
22
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
23
from .space import Space
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
24
from ..field import Field, exp
Martin Reinecke's avatar
Martin Reinecke committed
25
from .. import dobj
csongor's avatar
csongor committed
26

Marco Selig's avatar
Marco Selig committed
27

Theo Steininger's avatar
Theo Steininger committed
28
class RGSpace(Space):
Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    """NIFTY subclass for spaces of regular Cartesian grids.

    Parameters
    ----------
    shape : {int, numpy.ndarray}
        Number of grid points or numbers of gridpoints along each axis.
    distances : {float, numpy.ndarray}, *optional*
        Distance between two grid points along each axis
        (default: None).
        If distances==None:
            if harmonic==True, all distances will be set to 1
            if harmonic==False, the distance along each axis will be
              set to the inverse of the number of points along that
              axis.
    harmonic : bool, *optional*
    Whether the space represents a grid in position or harmonic space.
        (default: False).
Marco Selig's avatar
Marco Selig committed
46
    """
47

Martin Reinecke's avatar
Martin Reinecke committed
48
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
49
        super(RGSpace, self).__init__()
50
        self._needed_for_hash += ["_distances", "_shape", "_harmonic"]
51

Martin Reinecke's avatar
Martin Reinecke committed
52
        self._harmonic = bool(harmonic)
Martin Reinecke's avatar
Martin Reinecke committed
53
54
55
        if np.isscalar(shape):
            shape = (shape,)
        self._shape = tuple(int(i) for i in shape)
56
        self._distances = self._parse_distances(distances)
57
        self._dvol = float(reduce(lambda x, y: x*y, self._distances))
Martin Reinecke's avatar
Martin Reinecke committed
58
        self._dim = int(reduce(lambda x, y: x*y, self._shape))
Marco Selig's avatar
Marco Selig committed
59

60
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
61
62
        return ("RGSpace(shape=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.distances, self.harmonic))
63

64
65
66
67
68
69
70
71
72
73
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
Martin Reinecke's avatar
Martin Reinecke committed
74
        return self._dim
75

76
77
    def scalar_dvol(self):
        return self._dvol
78

79
    def get_k_length_array(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
80
81
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
82
        out = Field((self,), dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
83
84
85
        oloc = dobj.local_data(out.val)
        ibegin = dobj.ibegin(out.val)
        res = np.arange(oloc.shape[0], dtype=np.float64) + ibegin[0]
Martin Reinecke's avatar
Martin Reinecke committed
86
87
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
88
89
            oloc[()] = res
            return out
Martin Reinecke's avatar
Martin Reinecke committed
90
91
        res *= res
        for i in range(1, len(self.shape)):
Martin Reinecke's avatar
Martin Reinecke committed
92
            tmp = np.arange(oloc.shape[i], dtype=np.float64) + ibegin[i]
Martin Reinecke's avatar
Martin Reinecke committed
93
94
95
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
Martin Reinecke's avatar
Martin Reinecke committed
96
97
        oloc[()] = np.sqrt(res)
        return out
theos's avatar
theos committed
98

99
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
100
101
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
119
            # FIXME: this needs to improve for MPI. Maybe unique()/gather()?
Martin Reinecke's avatar
Martin Reinecke committed
120
121
            tmp = dobj.to_global_data(self.get_k_length_array().val)
            tmp = np.unique(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
122
123
124
125
126
127
128
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

Martin Reinecke's avatar
Martin Reinecke committed
129
130
131
132
    @staticmethod
    def _kernel(x, sigma):
        tmp = x*x
        tmp *= -2.*np.pi*np.pi*sigma*sigma
133
        exp(tmp, out=tmp)
Martin Reinecke's avatar
Martin Reinecke committed
134
135
        return tmp

136
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
137
138
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
139
        return lambda x: self._kernel(x, sigma)
theos's avatar
theos committed
140

Martin Reinecke's avatar
Martin Reinecke committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    def get_default_codomain(self):
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
        if not np.all(
            np.absolute(np.array(self.shape) *
                        np.array(self.distances) *
Martin Reinecke's avatar
Martin Reinecke committed
161
                        np.array(codomain.distances)-1) < 1e-7):
Martin Reinecke's avatar
Martin Reinecke committed
162
163
164
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

165
166
    @property
    def distances(self):
Martin Reinecke's avatar
Martin Reinecke committed
167
        """Distance between grid points along each axis. It is a tuple
Theo Steininger's avatar
Theo Steininger committed
168
        of positive floating point numbers with the n-th entry giving the
Martin Reinecke's avatar
Martin Reinecke committed
169
        distance between neighboring grid points along the n-th dimension.
170
        """
171
172
173
174
175
        return self._distances

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
176
                temp = np.ones_like(self.shape, dtype=np.float64)
177
            else:
Martin Reinecke's avatar
Martin Reinecke committed
178
                temp = 1./np.array(self.shape, dtype=np.float64)
179
        else:
Martin Reinecke's avatar
Martin Reinecke committed
180
            temp = np.empty(len(self.shape), dtype=np.float64)
181
182
            temp[:] = distances
        return tuple(temp)