smooth_linear_amplitude.py 6.95 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

18
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Philipp Arras's avatar
Docs    
Philipp Arras committed
20
from ..domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domains.power_space import PowerSpace
22
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
23
24
25
26
27
from ..operators.exp_transform import ExpTransform
from ..operators.offset_operator import OffsetOperator
from ..operators.qht_operator import QHTOperator
from ..operators.slope_operator import SlopeOperator
from ..operators.symmetrizing_operator import SymmetrizingOperator
28
from ..sugar import makeOp
29
30


31
32
def _ceps_kernel(k, a, k0):
    return (a/(1+np.sum((k.T/k0)**2, axis=1)))**2
33
34


Philipp Arras's avatar
Docs    
Philipp Arras committed
35
36
def CepstrumOperator(target, a, k0):
    '''Turns a white Gaussian random field into a smooth field on a LogRGSpace.
37

Philipp Arras's avatar
Docs    
Philipp Arras committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    Composed out of three operators:

        sym @ qht @ diag(sqrt_ceps),

    where sym is a :class:`SymmetrizingOperator`, qht is a :class:`QHTOperator`
    and ceps is the so-called cepstrum:

    .. math::
        \\mathrm{sqrt\_ceps}(k) = \\frac{a}{1+(k/k0)^2}

    These operators are combined in this fashion in order to generate:

    - A field which is smooth, i.e. second derivatives are punished (note
      that the sqrt-cepstrum is essentially proportional to 1/k**2).

    - A field which is symmetric around the pixel in the middle of the space.
      This is result of the :class:`SymmetrizingOperator` and needed in order to
      decouple the degrees of freedom at the beginning and the end of the
      amplitude whenever :class:`CepstrumOperator` is used as in
      :class:`SLAmplitude`.

59
60
61
    The prior on the zero mode, or zero subspaces in the case of dim > 1,
    is the integral of the prior of all other modes along the corresponding
    axis.
Philipp Arras's avatar
Docs    
Philipp Arras committed
62
63
64
65

    Parameters
    ----------
    target : LogRGSpace
66
        Target domain of the operator, needs to be non-harmonic.
Philipp Arras's avatar
Docs    
Philipp Arras committed
67
    a : float
68
69
70
71
72
73
74
        Cutoff of smoothness prior (positive only). Controls the
        regularization of the inverse laplace operator to be finite at zero.
        Larger values for the cutoff results in a weaker constraining prior.
    k0 : float, list of float
        Strength of smothness prior in quefrency space (positive only) along
        each axis. If float then the strength is the same along each axis.
        Larger values result in a weaker constraining prior.
Philipp Arras's avatar
Docs    
Philipp Arras committed
75
    '''
76
    a = float(a)
Philipp Arras's avatar
Docs    
Philipp Arras committed
77
    target = DomainTuple.make(target)
78
    if a <= 0:
Philipp Arras's avatar
Docs    
Philipp Arras committed
79
        raise ValueError
80
    if len(target) > 1 or target[0].harmonic:
Philipp Arras's avatar
Docs    
Philipp Arras committed
81
        raise TypeError
82
83
84
85
86
87
    if isinstance(k0, float):
        k0 = (k0, )*len(target.shape)
    elif len(k0) != len(target.shape):
        raise ValueError
    if np.any(np.array(k0) <= 0):
        raise ValueError
Philipp Arras's avatar
Docs    
Philipp Arras committed
88
89
90
91
92
93
94
95
96

    qht = QHTOperator(target)
    dom = qht.domain[0]
    sym = SymmetrizingOperator(target)

    # Compute cepstrum field
    dim = len(dom.shape)
    shape = dom.shape
    q_array = dom.get_k_array()
97
    # Fill all non-zero modes
Philipp Arras's avatar
Philipp Arras committed
98
99
    no_zero_modes = (slice(1, None),)*dim
    ks = q_array[(slice(None),) + no_zero_modes]
100
    cepstrum_field = np.zeros(shape)
Philipp Arras's avatar
Docs    
Philipp Arras committed
101
    cepstrum_field[no_zero_modes] = _ceps_kernel(dom, ks, a, k0)
102
    # Fill zero-mode subspaces
103
    for i in range(dim):
Philipp Arras's avatar
Philipp Arras committed
104
105
106
        fst_dims = (slice(None),)*i
        sl = fst_dims + (slice(1, None),)
        sl2 = fst_dims + (0,)
107
        cepstrum_field[sl2] = np.sum(cepstrum_field[sl], axis=i)
Philipp Arras's avatar
Docs    
Philipp Arras committed
108
    cepstrum = Field.from_global_data(dom, cepstrum_field)
Philipp Arras's avatar
Philipp Arras committed
109

110
111
112
    return sym @ qht @ makeOp(cepstrum.sqrt())


113
114
115
def SLAmplitude(target, n_pix, a, k0, sm, sv, im, iv, keys=['tau', 'phi']):
    '''Operator for parametrizing smooth amplitudes (square roots of power
    spectra).
116
117
118

    The general guideline for setting up generative models in IFT is to
    transform the problem into the eigenbase of the prior and formulate the
119
120
    generative model in this base. This is done here for the case of an
    amplitude which is smooth and has a linear component (both on
121
122
123
    double-logarithmic scale).

    This function assembles an :class:`Operator` which maps two a-priori white
124
    Gaussian random fields to a smooth amplitude which is composed out of
125
126
127
128
129
130
    a linear and a smooth component.

    On double-logarithmic scale, i.e. both x and y-axis on logarithmic scale,
    the output of the generated operator is:

        AmplitudeOperator = 0.5*(smooth_component + linear_component)
Philipp Arras's avatar
Philipp Arras committed
131

132
    This is then exponentiated and exponentially binned (in this order).
133
134
135
136
137
138
139

    The prior on the linear component is parametrized by four real numbers,
    being expected value and prior variance on the slope and the y-intercept
    of the linear function.

    The prior on the smooth component is parametrized by two real numbers: the
    strength and the cutoff of the smoothness prior (see :class:`CepstrumOperator`).
Martin Reinecke's avatar
Martin Reinecke committed
140
141
142

    Parameters
    ----------
143
144
145
146
147
148
149
150
    n_pix : int
        Number of pixels of the space in which the .
    target : PowerSpace
        Target of the Operator.
    a : float
        Strength of smoothness prior (see :class:`CepstrumOperator`).
    k0 : float
        Cutoff of smothness prior in quefrency space (see :class:`CepstrumOperator`).
Philipp Arras's avatar
Philipp Arras committed
151
    sm : float
152
        Expected exponent of power law. FIXME
Philipp Arras's avatar
Philipp Arras committed
153
    sv : float
154
        Prior standard deviation of exponent of power law.
Philipp Arras's avatar
Philipp Arras committed
155
    im : float
156
        Expected y-intercept of power law. FIXME
Philipp Arras's avatar
Philipp Arras committed
157
    iv : float
158
        Prior standard deviation of y-intercept of power law.
159
160
161
162
163
164
165

    Returns
    -------
    Operator
        Operator which is defined on the space of white excitations fields and
        which returns on its target a power spectrum which consists out of a
        smooth and a linear part.
Martin Reinecke's avatar
Martin Reinecke committed
166
    '''
167
168
169
170
171
    if not (isinstance(n_pix, int) and isinstance(target, PowerSpace)):
        raise TypeError

    a, k0 = float(a), float(k0)
    sm, sv, im, iv = float(sm), float(sv), float(im), float(iv)
172
173
    if sv <= 0 or iv <= 0:
        raise ValueError
174
175
176
177

    et = ExpTransform(target, n_pix)
    dom = et.domain[0]

178
    # Smooth component
179
180
    dct = {'a': a, 'k0': k0}
    smooth = CepstrumOperator(dom, **dct).ducktape(keys[0])
Martin Reinecke's avatar
Martin Reinecke committed
181

182
    # Linear component
183
184
185
186
187
188
    sl = SlopeOperator(dom)
    mean = np.array([sm, im + sm*dom.t_0[0]])
    sig = np.array([sv, iv])
    mean = Field.from_global_data(sl.domain, mean)
    sig = Field.from_global_data(sl.domain, sig)
    linear = (sl @ OffsetOperator(mean) @ makeOp(sig)).ducktape(keys[1])
189
190
191

    # Combine linear and smooth component
    loglog_ampl = 0.5*(smooth + linear)
Philipp Arras's avatar
Changes    
Philipp Arras committed
192

193
    # Go from loglog-space to linear-linear-space
Philipp Arras's avatar
Philipp Arras committed
194
    return et @ loglog_ampl.exp()