smooth_linear_amplitude.py 6.95 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

18
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Philipp Arras's avatar
Docs  
Philipp Arras committed
20
from ..domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domains.power_space import PowerSpace
22
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
23 24 25 26 27
from ..operators.exp_transform import ExpTransform
from ..operators.offset_operator import OffsetOperator
from ..operators.qht_operator import QHTOperator
from ..operators.slope_operator import SlopeOperator
from ..operators.symmetrizing_operator import SymmetrizingOperator
28
from ..sugar import makeOp
29 30


31 32
def _ceps_kernel(k, a, k0):
    return (a/(1+np.sum((k.T/k0)**2, axis=1)))**2
33 34


Philipp Arras's avatar
Docs  
Philipp Arras committed
35 36
def CepstrumOperator(target, a, k0):
    '''Turns a white Gaussian random field into a smooth field on a LogRGSpace.
37

Philipp Arras's avatar
Docs  
Philipp Arras committed
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    Composed out of three operators:

        sym @ qht @ diag(sqrt_ceps),

    where sym is a :class:`SymmetrizingOperator`, qht is a :class:`QHTOperator`
    and ceps is the so-called cepstrum:

    .. math::
        \\mathrm{sqrt\_ceps}(k) = \\frac{a}{1+(k/k0)^2}

    These operators are combined in this fashion in order to generate:

    - A field which is smooth, i.e. second derivatives are punished (note
      that the sqrt-cepstrum is essentially proportional to 1/k**2).

    - A field which is symmetric around the pixel in the middle of the space.
      This is result of the :class:`SymmetrizingOperator` and needed in order to
      decouple the degrees of freedom at the beginning and the end of the
      amplitude whenever :class:`CepstrumOperator` is used as in
      :class:`SLAmplitude`.

59 60 61
    The prior on the zero mode, or zero subspaces in the case of dim > 1,
    is the integral of the prior of all other modes along the corresponding
    axis.
Philipp Arras's avatar
Docs  
Philipp Arras committed
62 63 64 65

    Parameters
    ----------
    target : LogRGSpace
66
        Target domain of the operator, needs to be non-harmonic.
Philipp Arras's avatar
Docs  
Philipp Arras committed
67
    a : float
68 69 70 71 72 73 74
        Cutoff of smoothness prior (positive only). Controls the
        regularization of the inverse laplace operator to be finite at zero.
        Larger values for the cutoff results in a weaker constraining prior.
    k0 : float, list of float
        Strength of smothness prior in quefrency space (positive only) along
        each axis. If float then the strength is the same along each axis.
        Larger values result in a weaker constraining prior.
Philipp Arras's avatar
Docs  
Philipp Arras committed
75
    '''
76
    a = float(a)
Philipp Arras's avatar
Docs  
Philipp Arras committed
77
    target = DomainTuple.make(target)
78
    if a <= 0:
Philipp Arras's avatar
Docs  
Philipp Arras committed
79
        raise ValueError
80
    if len(target) > 1 or target[0].harmonic:
Philipp Arras's avatar
Docs  
Philipp Arras committed
81
        raise TypeError
82 83 84 85 86 87
    if isinstance(k0, float):
        k0 = (k0, )*len(target.shape)
    elif len(k0) != len(target.shape):
        raise ValueError
    if np.any(np.array(k0) <= 0):
        raise ValueError
Philipp Arras's avatar
Docs  
Philipp Arras committed
88 89 90 91 92 93 94 95 96

    qht = QHTOperator(target)
    dom = qht.domain[0]
    sym = SymmetrizingOperator(target)

    # Compute cepstrum field
    dim = len(dom.shape)
    shape = dom.shape
    q_array = dom.get_k_array()
97
    # Fill all non-zero modes
Philipp Arras's avatar
Philipp Arras committed
98 99
    no_zero_modes = (slice(1, None),)*dim
    ks = q_array[(slice(None),) + no_zero_modes]
100
    cepstrum_field = np.zeros(shape)
Philipp Arras's avatar
Docs  
Philipp Arras committed
101
    cepstrum_field[no_zero_modes] = _ceps_kernel(dom, ks, a, k0)
102
    # Fill zero-mode subspaces
103
    for i in range(dim):
Philipp Arras's avatar
Philipp Arras committed
104 105 106
        fst_dims = (slice(None),)*i
        sl = fst_dims + (slice(1, None),)
        sl2 = fst_dims + (0,)
107
        cepstrum_field[sl2] = np.sum(cepstrum_field[sl], axis=i)
Philipp Arras's avatar
Docs  
Philipp Arras committed
108
    cepstrum = Field.from_global_data(dom, cepstrum_field)
Philipp Arras's avatar
Philipp Arras committed
109

110 111 112
    return sym @ qht @ makeOp(cepstrum.sqrt())


113 114 115
def SLAmplitude(target, n_pix, a, k0, sm, sv, im, iv, keys=['tau', 'phi']):
    '''Operator for parametrizing smooth amplitudes (square roots of power
    spectra).
116 117 118

    The general guideline for setting up generative models in IFT is to
    transform the problem into the eigenbase of the prior and formulate the
119 120
    generative model in this base. This is done here for the case of an
    amplitude which is smooth and has a linear component (both on
121 122 123
    double-logarithmic scale).

    This function assembles an :class:`Operator` which maps two a-priori white
124
    Gaussian random fields to a smooth amplitude which is composed out of
125 126 127 128 129 130
    a linear and a smooth component.

    On double-logarithmic scale, i.e. both x and y-axis on logarithmic scale,
    the output of the generated operator is:

        AmplitudeOperator = 0.5*(smooth_component + linear_component)
Philipp Arras's avatar
Philipp Arras committed
131

132
    This is then exponentiated and exponentially binned (in this order).
133 134 135 136 137 138 139

    The prior on the linear component is parametrized by four real numbers,
    being expected value and prior variance on the slope and the y-intercept
    of the linear function.

    The prior on the smooth component is parametrized by two real numbers: the
    strength and the cutoff of the smoothness prior (see :class:`CepstrumOperator`).
Martin Reinecke's avatar
Martin Reinecke committed
140 141 142

    Parameters
    ----------
143 144 145 146 147 148 149 150
    n_pix : int
        Number of pixels of the space in which the .
    target : PowerSpace
        Target of the Operator.
    a : float
        Strength of smoothness prior (see :class:`CepstrumOperator`).
    k0 : float
        Cutoff of smothness prior in quefrency space (see :class:`CepstrumOperator`).
Philipp Arras's avatar
Philipp Arras committed
151
    sm : float
152
        Expected exponent of power law. FIXME
Philipp Arras's avatar
Philipp Arras committed
153
    sv : float
154
        Prior standard deviation of exponent of power law.
Philipp Arras's avatar
Philipp Arras committed
155
    im : float
156
        Expected y-intercept of power law. FIXME
Philipp Arras's avatar
Philipp Arras committed
157
    iv : float
158
        Prior standard deviation of y-intercept of power law.
159 160 161 162 163 164 165

    Returns
    -------
    Operator
        Operator which is defined on the space of white excitations fields and
        which returns on its target a power spectrum which consists out of a
        smooth and a linear part.
Martin Reinecke's avatar
Martin Reinecke committed
166
    '''
167 168 169 170 171
    if not (isinstance(n_pix, int) and isinstance(target, PowerSpace)):
        raise TypeError

    a, k0 = float(a), float(k0)
    sm, sv, im, iv = float(sm), float(sv), float(im), float(iv)
172 173
    if sv <= 0 or iv <= 0:
        raise ValueError
174 175 176 177

    et = ExpTransform(target, n_pix)
    dom = et.domain[0]

178
    # Smooth component
179 180
    dct = {'a': a, 'k0': k0}
    smooth = CepstrumOperator(dom, **dct).ducktape(keys[0])
Martin Reinecke's avatar
Martin Reinecke committed
181

182
    # Linear component
183 184 185 186 187 188
    sl = SlopeOperator(dom)
    mean = np.array([sm, im + sm*dom.t_0[0]])
    sig = np.array([sv, iv])
    mean = Field.from_global_data(sl.domain, mean)
    sig = Field.from_global_data(sl.domain, sig)
    linear = (sl @ OffsetOperator(mean) @ makeOp(sig)).ducktape(keys[1])
189 190 191

    # Combine linear and smooth component
    loglog_ampl = 0.5*(smooth + linear)
Philipp Arras's avatar
Changes  
Philipp Arras committed
192

193
    # Go from loglog-space to linear-linear-space
Philipp Arras's avatar
Philipp Arras committed
194
    return et @ loglog_ampl.exp()