energy_operators.py 5.58 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import absolute_import, division, print_function

from ..compat import *
from ..domain_tuple import DomainTuple
from .operator import Operator
from .sandwich_operator import SandwichOperator
from ..sugar import makeOp
from ..linearization import Linearization
from .. import utilities


class EnergyOperator(Operator):
    _target = DomainTuple.scalar_domain()

    @property
    def target(self):
        return EnergyOperator._target


class SquaredNormOperator(EnergyOperator):
    def __init__(self, domain):
        super(SquaredNormOperator, self).__init__()
        self._domain = domain

    @property
    def domain(self):
        return self._domain

    def apply(self, x):
        return Field(self._target, x.vdot(x))


class QuadraticFormOperator(EnergyOperator):
    def __init__(self, op):
        from .endomorphic_operator import EndomorphicOperator
        super(QuadraticFormOperator, self).__init__()
        if not isinstance(op, EndomorphicOperator):
            raise TypeError("op must be an EndomorphicOperator")
        self._op = op

    @property
    def domain(self):
        return self._op.domain

    def apply(self, x):
        if isinstance(x, Linearization):
            jac = self._op(x)
            val = Field(self._target, 0.5 * x.vdot(jac))
            return Linearization(val, jac)
        return Field(self._target, 0.5 * x.vdot(self._op(x)))


class GaussianEnergy(EnergyOperator):
    def __init__(self, mean=None, covariance=None, domain=None):
        super(GaussianEnergy, self).__init__()
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
        if self._domain is None:
            self._domain = newdom
        else:
            if self._domain is not newdom:
                raise ValueError("domain mismatch")

    @property
    def domain(self):
        return self._domain

    def apply(self, x):
        residual = x if self._mean is None else x-self._mean
        icovres = residual if self._icov is None else self._icov(residual)
        res = .5*residual.vdot(icovres)
        if not isinstance(x, Linearization):
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
    def __init__(self, op, d):
        self._op, self._d = op, d

    @property
    def domain(self):
        return self._op.domain

    def apply(self, x):
        x = self._op(x)
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
            return res
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)


class BernoulliEnergy(EnergyOperator):
    def __init__(self, p, d):
        self._p = p
        self._d = d

    @property
    def domain(self):
        return self._p.domain

    def apply(self, x):
        x = self._p(x)
        v = x.log().vdot(-self._d) - (1.-x).log().vdot(1.-self._d)
        if not isinstance(x, Linearization):
            return v
        met = makeOp(1./(x.val*(1.-x.val)))
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


class Hamiltonian(EnergyOperator):
    def __init__(self, lh, ic_samp=None):
        super(Hamiltonian, self).__init__()
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp

    @property
    def domain(self):
        return self._lh.domain

    def apply(self, x):
        if self._ic_samp is None or not isinstance(x, Linearization):
            return self._lh(x) + self._prior(x)
        else:
            lhx = self._lh(x)
            prx = self._prior(x)
            mtr = SamplingEnabler(lhx.metric, prx.metric.inverse,
                                  self._ic_samp, prx.metric.inverse)
            return (lhx+prx).add_metric(mtr)


class SampledKullbachLeiblerDivergence(EnergyOperator):
    def __init__(self, h, res_samples):
        """
        # MR FIXME: does h have to be a Hamiltonian? Couldn't it be any energy?
        h: Hamiltonian
        N: Number of samples to be used
        """
        super(SampledKullbachLeiblerDivergence, self).__init__()
        self._h = h
        self._res_samples = tuple(res_samples)

    @property
    def domain(self):
        return self._h.domain

    def apply(self, x):
        return (utilities.my_sum(map(lambda v: self._h(x+v), self._res_samples)) *
                (1./len(self._res_samples)))