extra.py 9.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17
18

import numpy as np
19
from numpy.testing import assert_
Philipp Arras's avatar
Philipp Arras committed
20

21
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
fix    
Martin Reinecke committed
22
23
from .field import Field
from .linearization import Linearization
24
from .multi_domain import MultiDomain
25
from .multi_field import MultiField
26
from .operators.linear_operator import LinearOperator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
27
from .sugar import from_random
28

Philipp Arras's avatar
Philipp Arras committed
29
30
__all__ = ["consistency_check", "check_jacobian_consistency",
           "assert_allclose"]
31

Philipp Arras's avatar
Philipp Arras committed
32

Philipp Arras's avatar
Philipp Arras committed
33
def assert_allclose(f1, f2, atol, rtol):
Martin Reinecke's avatar
Martin Reinecke committed
34
    if isinstance(f1, Field):
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
35
        return np.testing.assert_allclose(f1.val, f2.val, atol=atol, rtol=rtol)
Martin Reinecke's avatar
Martin Reinecke committed
36
    for key, val in f1.items():
Philipp Arras's avatar
Philipp Arras committed
37
        assert_allclose(val, f2[key], atol=atol, rtol=rtol)
Martin Reinecke's avatar
Martin Reinecke committed
38
39


40
41
def _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol,
                            only_r_linear):
Martin Reinecke's avatar
Martin Reinecke committed
42
43
44
45
46
47
48
    needed_cap = op.TIMES | op.ADJOINT_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    f1 = from_random("normal", op.domain, dtype=domain_dtype)
    f2 = from_random("normal", op.target, dtype=target_dtype)
    res1 = f1.vdot(op.adjoint_times(f2))
    res2 = op.times(f1).vdot(f2)
49
50
    if only_r_linear:
        res1, res2 = res1.real, res2.real
Martin Reinecke's avatar
Martin Reinecke committed
51
52
53
54
55
56
57
58
59
    np.testing.assert_allclose(res1, res2, atol=atol, rtol=rtol)


def _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.INVERSE_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    foo = from_random("normal", op.target, dtype=target_dtype)
    res = op(op.inverse_times(foo))
Philipp Arras's avatar
Philipp Arras committed
60
    assert_allclose(res, foo, atol=atol, rtol=rtol)
Martin Reinecke's avatar
Martin Reinecke committed
61
62
63

    foo = from_random("normal", op.domain, dtype=domain_dtype)
    res = op.inverse_times(op(foo))
Philipp Arras's avatar
Philipp Arras committed
64
    assert_allclose(res, foo, atol=atol, rtol=rtol)
Martin Reinecke's avatar
Martin Reinecke committed
65
66


67
68
69
70
def _full_implementation(op, domain_dtype, target_dtype, atol, rtol,
                         only_r_linear):
    _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol,
                            only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
71
72
73
    _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol)


74
def _check_linearity(op, domain_dtype, atol, rtol):
Martin Reinecke's avatar
Martin Reinecke committed
75
76
77
    needed_cap = op.TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
78
79
    fld1 = from_random("normal", op.domain, dtype=domain_dtype)
    fld2 = from_random("normal", op.domain, dtype=domain_dtype)
Martin Reinecke's avatar
Martin Reinecke committed
80
    alpha = np.random.random()  # FIXME: this can break badly with MPI!
81
82
    val1 = op(alpha*fld1+fld2)
    val2 = alpha*op(fld1)+op(fld2)
Philipp Arras's avatar
Philipp Arras committed
83
    assert_allclose(val1, val2, atol=atol, rtol=rtol)
84
85


86
87
88
89
90
91
92
93
94
95
96
97
def _actual_domain_check(op, domain_dtype=None, inp=None):
    needed_cap = op.TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    if domain_dtype is not None:
        inp = from_random("normal", op.domain, dtype=domain_dtype)
    elif inp is None:
        raise ValueError('Need to specify either dtype or inp')
    assert_(inp.domain is op.domain)
    assert_(op(inp).domain is op.target)


Philipp Arras's avatar
Philipp Arras committed
98
def _actual_domain_check_nonlinear(op, loc):
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    assert isinstance(loc, (Field, MultiField))
    assert_(loc.domain is op.domain)
    lin = Linearization.make_var(loc, False)
    reslin = op(lin)
    assert_(lin.domain is op.domain)
    assert_(lin.target is op.domain)
    assert_(lin.val.domain is lin.domain)

    assert_(reslin.domain is op.domain)
    assert_(reslin.target is op.target)
    assert_(reslin.val.domain is reslin.target)

    assert_(reslin.target is op.target)
    assert_(reslin.jac.domain is reslin.domain)
    assert_(reslin.jac.target is reslin.target)
    _actual_domain_check(reslin.jac, inp=loc)
Philipp Arras's avatar
Philipp Arras committed
115
    _actual_domain_check(reslin.jac.adjoint, inp=reslin.jac(loc))
116
117


118
119
120
def _domain_check(op):
    for dd in [op.domain, op.target]:
        if not isinstance(dd, (DomainTuple, MultiDomain)):
Martin Reinecke's avatar
Martin Reinecke committed
121
122
123
            raise TypeError(
                'The domain and the target of an operator need to',
                'be instances of either DomainTuple or MultiDomain.')
124
125


126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def _performance_check(op, pos, raise_on_fail):
    class CountingOp(LinearOperator):
        def __init__(self, domain):
            from .sugar import makeDomain
            self._domain = self._target = makeDomain(domain)
            self._capability = self.TIMES | self.ADJOINT_TIMES
            self._count = 0

        def apply(self, x, mode):
            self._count += 1
            return x

        @property
        def count(self):
            return self._count
    cop = CountingOp(op.domain)
    op = op @ cop
    lin = op(Linearization.make_var(pos))
    cond = [cop.count != 1]
    lin.jac(pos)
    cond.append(cop.count != 2)
    lin.jac.adjoint(lin.val)
    cond.append(cop.count != 3)
    if any(cond):
        s = 'The operator has a performance problem.'
        if raise_on_fail:
            raise RuntimeError(s)
        from .logger import logger
        logger.warn(s)


Martin Reinecke's avatar
Martin Reinecke committed
157
def consistency_check(op, domain_dtype=np.float64, target_dtype=np.float64,
158
                      atol=0, rtol=1e-7, only_r_linear=False):
Reimar H Leike's avatar
Reimar H Leike committed
159
160
161
162
    """
    Checks an operator for algebraic consistency of its capabilities.

    Checks whether times(), adjoint_times(), inverse_times() and
Philipp Arras's avatar
Philipp Arras committed
163
    adjoint_inverse_times() (if in capability list) is implemented
Reimar H Leike's avatar
Reimar H Leike committed
164
    consistently. Additionally, it checks whether the operator is linear.
Philipp Arras's avatar
Philipp Arras committed
165
166
167
168
169

    Parameters
    ----------
    op : LinearOperator
        Operator which shall be checked.
Reimar H Leike's avatar
Reimar H Leike committed
170
    domain_dtype : dtype
Philipp Arras's avatar
Philipp Arras committed
171
172
        The data type of the random vectors in the operator's domain. Default
        is `np.float64`.
Reimar H Leike's avatar
Reimar H Leike committed
173
    target_dtype : dtype
Philipp Arras's avatar
Philipp Arras committed
174
175
176
        The data type of the random vectors in the operator's target. Default
        is `np.float64`.
    atol : float
Martin Reinecke's avatar
Martin Reinecke committed
177
178
        Absolute tolerance for the check. If rtol is specified,
        then satisfying any tolerance will let the check pass.
Reimar H Leike's avatar
Reimar H Leike committed
179
        Default: 0.
Philipp Arras's avatar
Philipp Arras committed
180
    rtol : float
Martin Reinecke's avatar
Martin Reinecke committed
181
182
        Relative tolerance for the check. If atol is specified,
        then satisfying any tolerance will let the check pass.
Reimar H Leike's avatar
Reimar H Leike committed
183
        Default: 0.
184
185
186
    only_r_linear: bool
        set to True if the operator is only R-linear, not C-linear.
        This will relax the adjointness test accordingly.
Philipp Arras's avatar
Philipp Arras committed
187
    """
188
189
    if not isinstance(op, LinearOperator):
        raise TypeError('This test tests only linear operators.')
190
    _domain_check(op)
191
    _actual_domain_check(op, domain_dtype)
Philipp Arras's avatar
Philipp Arras committed
192
193
    _actual_domain_check(op.adjoint, target_dtype)
    _actual_domain_check(op.inverse, target_dtype)
194
    _actual_domain_check(op.adjoint.inverse, domain_dtype)
195
    _check_linearity(op, domain_dtype, atol, rtol)
Martin Reinecke's avatar
Martin Reinecke committed
196
197
198
    _check_linearity(op.adjoint, target_dtype, atol, rtol)
    _check_linearity(op.inverse, target_dtype, atol, rtol)
    _check_linearity(op.adjoint.inverse, domain_dtype, atol, rtol)
199
200
201
202
203
204
    _full_implementation(op, domain_dtype, target_dtype, atol, rtol,
                         only_r_linear)
    _full_implementation(op.adjoint, target_dtype, domain_dtype, atol, rtol,
                         only_r_linear)
    _full_implementation(op.inverse, target_dtype, domain_dtype, atol, rtol,
                         only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
205
    _full_implementation(op.adjoint.inverse, domain_dtype, target_dtype, atol,
206
                         rtol, only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
207
208


Martin Reinecke's avatar
Martin Reinecke committed
209
def _get_acceptable_location(op, loc, lin):
Martin Reinecke's avatar
Martin Reinecke committed
210
    if not np.isfinite(lin.val.sum()):
Martin Reinecke's avatar
Martin Reinecke committed
211
212
213
214
        raise ValueError('Initial value must be finite')
    dir = from_random("normal", loc.domain)
    dirder = lin.jac(dir)
    if dirder.norm() == 0:
Martin Reinecke's avatar
Martin Reinecke committed
215
        dir = dir * (lin.val.norm()*1e-5)
Martin Reinecke's avatar
Martin Reinecke committed
216
    else:
Martin Reinecke's avatar
Martin Reinecke committed
217
        dir = dir * (lin.val.norm()*1e-5/dirder.norm())
Martin Reinecke's avatar
Martin Reinecke committed
218
219
220
221
    # Find a step length that leads to a "reasonable" location
    for i in range(50):
        try:
            loc2 = loc+dir
222
            lin2 = op(Linearization.make_var(loc2, lin.want_metric))
Martin Reinecke's avatar
Martin Reinecke committed
223
224
225
226
227
228
229
230
231
            if np.isfinite(lin2.val.sum()) and abs(lin2.val.sum()) < 1e20:
                break
        except FloatingPointError:
            pass
        dir = dir*0.5
    else:
        raise ValueError("could not find a reasonable initial step")
    return loc2, lin2

Martin Reinecke's avatar
Martin Reinecke committed
232

Martin Reinecke's avatar
Martin Reinecke committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def check_jacobian_consistency(op, loc, tol=1e-8, ntries=100):
    """
    Checks the Jacobian of an operator against its finite difference
    approximation.

    Computes the Jacobian with finite differences and compares it to the
    implemented Jacobian.

    Parameters
    ----------
    op : Operator
        Operator which shall be checked.
    loc : Field or MultiField
        An Field or MultiField instance which has the same domain
        as op. The location at which the gradient is checked
    tol : float
        Tolerance for the check.
    """
251
    _domain_check(op)
252
    _actual_domain_check_nonlinear(op, loc)
253
    _performance_check(op, loc, True)  # FIXME Make the default False
Martin Reinecke's avatar
Martin Reinecke committed
254
    for _ in range(ntries):
255
        lin = op(Linearization.make_var(loc))
Martin Reinecke's avatar
Martin Reinecke committed
256
        loc2, lin2 = _get_acceptable_location(op, loc, lin)
Martin Reinecke's avatar
Martin Reinecke committed
257
        dir = loc2-loc
Martin Reinecke's avatar
Martin Reinecke committed
258
259
260
261
        locnext = loc2
        dirnorm = dir.norm()
        for i in range(50):
            locmid = loc + 0.5*dir
262
            linmid = op(Linearization.make_var(locmid))
Martin Reinecke's avatar
Martin Reinecke committed
263
264
            dirder = linmid.jac(dir)
            numgrad = (lin2.val-lin.val)
Martin Reinecke's avatar
Martin Reinecke committed
265
            xtol = tol * dirder.norm() / np.sqrt(dirder.size)
Martin Reinecke's avatar
Martin Reinecke committed
266
            if (abs(numgrad-dirder) <= xtol).all():
Martin Reinecke's avatar
Martin Reinecke committed
267
268
269
                break
            dir = dir*0.5
            dirnorm *= 0.5
Martin Reinecke's avatar
Martin Reinecke committed
270
            loc2, lin2 = locmid, linmid
Martin Reinecke's avatar
Martin Reinecke committed
271
272
273
        else:
            raise ValueError("gradient and value seem inconsistent")
        loc = locnext