rg_space.py 11.6 KB
Newer Older
1
2
3
4
5
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
6
7
8
9
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
10
#
11
12
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
13
14
15
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
16
# You should have received a copy of the GNU General Public License
17
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
32

Marco Selig's avatar
Marco Selig committed
33
import numpy as np
Theo Steininger's avatar
Theo Steininger committed
34

35
36
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES
37

38
from nifty.spaces.space import Space
csongor's avatar
csongor committed
39

Marco Selig's avatar
Marco Selig committed
40

Theo Steininger's avatar
Theo Steininger committed
41
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
42
43
44
45
46
47
48
49
50
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

Theo Steininger's avatar
Theo Steininger committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        Parameters
        ----------
        shape : {int, numpy.ndarray}
            Number of grid points or numbers of gridpoints along each axis.
        zerocenter : {bool, numpy.ndarray}, *optional*
        Whether x==0 (or k==0, respectively) is located in the center of
        the grid (or the center of each axis speparately) or not.
        (default: False).
        distances : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis
            (default: None).
            If distances==None:
                if harmonic==True, all distances will be set to 1
                if harmonic==False, the distance along each axis will be
                  set to the inverse of the number of points along that
                  axis.
        harmonic : bool, *optional*
        Whether the space represents a grid in position or harmonic space.
Theo Steininger's avatar
Theo Steininger committed
69
            (default: False).
Marco Selig's avatar
Marco Selig committed
70
71
72

        Attributes
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
73
        harmonic : bool
Theo Steininger's avatar
Theo Steininger committed
74
75
76
77
78
            Whether or not the grid represents a position or harmonic space.
        zerocenter : tuple of bool
            Whether x==0 (or k==0, respectively) is located in the center of
            the grid (or the center of each axis speparately) or not.
        distances : tuple of floats
79
80
81
82
83
84
85
86
87
            Distance between two grid points along the correponding axis.
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
Theo Steininger's avatar
Theo Steininger committed
88

Marco Selig's avatar
Marco Selig committed
89
90
    """

91
92
    # ---Overwritten properties and methods---

93
    def __init__(self, shape, zerocenter=False, distances=None,
Martin Reinecke's avatar
Martin Reinecke committed
94
                 harmonic=False):
95
96
        self._harmonic = bool(harmonic)

Martin Reinecke's avatar
Martin Reinecke committed
97
        super(RGSpace, self).__init__()
98

99
100
101
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
        self._zerocenter = self._parse_zerocenter(zerocenter)
Marco Selig's avatar
Marco Selig committed
102

103
104
    def hermitian_decomposition(self, x, axes=None,
                                preserve_gaussian_variance=False):
105
106
107
108
109
110
111
112
113
        # compute the hermitian part
        flipped_x = self._hermitianize_inverter(x, axes=axes)
        flipped_x = flipped_x.conjugate()
        # average x and flipped_x.
        hermitian_part = x + flipped_x
        hermitian_part /= 2.

        # use subtraction since it is faster than flipping another time
        anti_hermitian_part = (x-hermitian_part)/1j
114
115
116
117
118
119
120

        if preserve_gaussian_variance:
            hermitian_part, anti_hermitian_part = \
                self._hermitianize_correct_variance(hermitian_part,
                                                    anti_hermitian_part,
                                                    axes=axes)

121
122
        return (hermitian_part, anti_hermitian_part)

123
124
125
126
127
128
    def _hermitianize_correct_variance(self, hermitian_part,
                                       anti_hermitian_part, axes):
        # Correct the variance by multiplying sqrt(2)
        hermitian_part = hermitian_part * np.sqrt(2)
        anti_hermitian_part = anti_hermitian_part * np.sqrt(2)

Martin Reinecke's avatar
Martin Reinecke committed
129
        # The fixed points of the point inversion must not be averaged.
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        # Hence one must divide out the sqrt(2) again
        # -> Get the middle index of the array
        mid_index = np.array(hermitian_part.shape, dtype=np.int) // 2
        dimensions = mid_index.size
        # Use ndindex to iterate over all combinations of zeros and the
        # mid_index in order to correct all fixed points.
        if axes is None:
            axes = xrange(dimensions)

        ndlist = [2 if i in axes else 1 for i in xrange(dimensions)]
        ndlist = tuple(ndlist)
        for i in np.ndindex(ndlist):
            temp_index = tuple(i * mid_index)
            hermitian_part[temp_index] /= np.sqrt(2)
            anti_hermitian_part[temp_index] /= np.sqrt(2)
        return hermitian_part, anti_hermitian_part

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def _hermitianize_inverter(self, x, axes):
        # calculate the number of dimensions the input array has
        dimensions = len(x.shape)
        # prepare the slicing object which will be used for mirroring
        slice_primitive = [slice(None), ] * dimensions
        # copy the input data
        y = x.copy()

        if axes is None:
            axes = xrange(dimensions)

        # flip in the desired directions
        for i in axes:
            slice_picker = slice_primitive[:]
            slice_picker[i] = slice(1, None, None)
            slice_picker = tuple(slice_picker)

            slice_inverter = slice_primitive[:]
            slice_inverter[i] = slice(None, 0, -1)
            slice_inverter = tuple(slice_inverter)

            try:
                y.set_data(to_key=slice_picker, data=y,
                           from_key=slice_inverter)
            except(AttributeError):
                y[slice_picker] = y[slice_inverter]
        return y

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    # ---Mandatory properties and methods---

    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
        return reduce(lambda x, y: x*y, self.shape)

    @property
    def total_volume(self):
        return self.dim * reduce(lambda x, y: x*y, self.distances)

    def copy(self):
        return self.__class__(shape=self.shape,
                              zerocenter=self.zerocenter,
                              distances=self.distances,
Martin Reinecke's avatar
Martin Reinecke committed
197
                              harmonic=self.harmonic)
198
199

    def weight(self, x, power=1, axes=None, inplace=False):
200
        weight = reduce(lambda x, y: x*y, self.distances) ** np.float(power)
201
202
203
204
205
206
207
        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x*weight
        return result_x

208
    def get_distance_array(self, distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
209
210
        """ Calculates an n-dimensional array with its entries being the
        lengths of the vectors from the zero point of the grid.
211

Theo Steininger's avatar
Theo Steininger committed
212
213
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
214
215
216
        distribution_strategy : str
            The distribution_strategy which shall be used the returned
            distributed_data_object.
217

Theo Steininger's avatar
Theo Steininger committed
218
219
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
220
        distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
221
222
            A d2o containing the distances.

223
        """
Theo Steininger's avatar
Theo Steininger committed
224

225
226
227
        shape = self.shape
        # prepare the distributed_data_object
        nkdict = distributed_data_object(
Martin Reinecke's avatar
Martin Reinecke committed
228
                        global_shape=shape, dtype=np.float64,
229
230
231
232
233
234
235
236
237
                        distribution_strategy=distribution_strategy)

        if distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            # get the node's individual slice of the first dimension
            slice_of_first_dimension = slice(
                                    *nkdict.distributor.local_slice[0:2])
        elif distribution_strategy in DISTRIBUTION_STRATEGIES['not']:
            slice_of_first_dimension = slice(0, shape[0])
        else:
238
239
            raise ValueError(
                "Unsupported distribution strategy")
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        dists = self._distance_array_helper(slice_of_first_dimension)
        nkdict.set_local_data(dists)

        return nkdict

    def _distance_array_helper(self, slice_of_first_dimension):
        dk = self.distances
        shape = self.shape

        inds = []
        for a in shape:
            inds += [slice(0, a)]

        cords = np.ogrid[inds]

Theo Steininger's avatar
Theo Steininger committed
255
        dists = ((cords[0] - shape[0]//2)*dk[0])**2
256
        # apply zerocenterQ shift
257
258
        if not self.zerocenter[0]:
            dists = np.fft.ifftshift(dists)
259
260
261
262
        # only save the individual slice
        dists = dists[slice_of_first_dimension]
        for ii in range(1, len(shape)):
            temp = ((cords[ii] - shape[ii] // 2) * dk[ii])**2
263
            if not self.zerocenter[ii]:
Martin Reinecke's avatar
Martin Reinecke committed
264
                temp = np.fft.ifftshift(temp)
265
266
267
268
            dists = dists + temp
        dists = np.sqrt(dists)
        return dists

269
    def get_fft_smoothing_kernel_function(self, sigma):
Theo Steininger's avatar
Theo Steininger committed
270

271
272
273
        if sigma is None:
            sigma = np.sqrt(2) * np.max(self.distances)

274
        return lambda x: np.exp(-0.5 * np.pi**2 * x**2 * sigma**2)
275

276
277
278
279
    # ---Added properties and methods---

    @property
    def distances(self):
Theo Steininger's avatar
Theo Steininger committed
280
281
282
        """Distance between two grid points along each axis. It is a tuple
        of positive floating point numbers with the n-th entry giving the
        distances of grid points along the n-th dimension.
283
        """
Theo Steininger's avatar
Theo Steininger committed
284

285
286
287
288
        return self._distances

    @property
    def zerocenter(self):
289
        """Returns True if grid points lie symmetrically around zero.
Theo Steininger's avatar
Theo Steininger committed
290

291
292
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
293
294
295
296
297
        bool
            True if the grid points are centered around the 0 grid point. This
            option is most common for harmonic spaces (where both conventions
            are used) but may be used for position spaces, too.

298
        """
Theo Steininger's avatar
Theo Steininger committed
299

300
301
302
303
304
305
306
307
308
309
310
311
        return self._zerocenter

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
312
                temp = np.ones_like(self.shape, dtype=np.float64)
313
            else:
Martin Reinecke's avatar
Martin Reinecke committed
314
                temp = 1 / np.array(self.shape, dtype=np.float64)
315
        else:
Martin Reinecke's avatar
Martin Reinecke committed
316
            temp = np.empty(len(self.shape), dtype=np.float64)
317
318
319
320
321
322
323
            temp[:] = distances
        return tuple(temp)

    def _parse_zerocenter(self, zerocenter):
        temp = np.empty(len(self.shape), dtype=bool)
        temp[:] = zerocenter
        return tuple(temp)
324
325
326
327

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Jait Dixit's avatar
Jait Dixit committed
328
329
330
        hdf5_group['shape'] = self.shape
        hdf5_group['zerocenter'] = self.zerocenter
        hdf5_group['distances'] = self.distances
331
        hdf5_group['harmonic'] = self.harmonic
Jait Dixit's avatar
Jait Dixit committed
332

333
334
335
        return None

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
336
    def _from_hdf5(cls, hdf5_group, repository):
337
        result = cls(
Jait Dixit's avatar
Jait Dixit committed
338
339
340
            shape=hdf5_group['shape'][:],
            zerocenter=hdf5_group['zerocenter'][:],
            distances=hdf5_group['distances'][:],
341
            harmonic=hdf5_group['harmonic'][()],
Jait Dixit's avatar
Jait Dixit committed
342
            )
343
        return result