scipy_minimizer.py 5.43 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
20
from __future__ import absolute_import, division, print_function
from ..compat import *
Martin Reinecke's avatar
Martin Reinecke committed
21
22
23
from .minimizer import Minimizer
from ..field import Field
from .. import dobj
Martin Reinecke's avatar
Martin Reinecke committed
24
from ..logger import logger
25
26
27
from .iteration_controller import IterationController


Martin Reinecke's avatar
Martin Reinecke committed
28
29
30
31
32
33
34
35
36
def _toNdarray(fld):
    return fld.to_global_data().reshape(-1)


def _toFlatNdarray(fld):
    return fld.val.flatten()


def _toField(arr, dom):
37
    return Field.from_global_data(dom, arr.reshape(dom.shape).copy())
Martin Reinecke's avatar
Martin Reinecke committed
38
39


40
41
42
43
44
45
class _MinHelper(object):
    def __init__(self, energy):
        self._energy = energy
        self._domain = energy.position.domain

    def _update(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
46
47
        pos = _toField(x, self._domain)
        if (pos != self._energy.position).any():
48
            self._energy = self._energy.at(pos)
49
50
51
52
53
54
55

    def fun(self, x):
        self._update(x)
        return self._energy.value

    def jac(self, x):
        self._update(x)
Martin Reinecke's avatar
Martin Reinecke committed
56
        return _toFlatNdarray(self._energy.gradient)
57
58
59

    def hessp(self, x, p):
        self._update(x)
Martin Reinecke's avatar
Martin Reinecke committed
60
        res = self._energy.metric(_toField(p, self._domain))
Martin Reinecke's avatar
Martin Reinecke committed
61
        return _toFlatNdarray(res)
Martin Reinecke's avatar
Martin Reinecke committed
62
63
64
65
66
67
68
69
70
71
72
73
74


class ScipyMinimizer(Minimizer):
    """Scipy-based minimizer

    Parameters
    ----------
    method     : str
        The selected Scipy minimization method.
    options    : dictionary
        A set of custom options for the selected minimizer.
    """

75
    def __init__(self, method, options, need_hessp, bounds):
Martin Reinecke's avatar
Martin Reinecke committed
76
77
78
79
80
81
        super(ScipyMinimizer, self).__init__()
        if not dobj.is_numpy():
            raise NotImplementedError
        self._method = method
        self._options = options
        self._need_hessp = need_hessp
82
        self._bounds = bounds
Martin Reinecke's avatar
Martin Reinecke committed
83
84
85

    def __call__(self, energy):
        import scipy.optimize as opt
86
87
88
89
90
91
92
93
        hlp = _MinHelper(energy)
        energy = None  # drop handle, since we don't need it any more
        bounds = None
        if self._bounds is not None:
            if len(self._bounds) == 2:
                lo = self._bounds[0]
                hi = self._bounds[1]
                bounds = [(lo, hi)]*hlp._energy.position.size
Martin Reinecke's avatar
Martin Reinecke committed
94
            else:
95
96
97
98
99
100
                raise ValueError("unrecognized bounds")

        x = hlp._energy.position.val.flatten()
        hessp = hlp.hessp if self._need_hessp else None
        r = opt.minimize(hlp.fun, x, method=self._method, jac=hlp.jac,
                         hessp=hessp, options=self._options, bounds=bounds)
Martin Reinecke's avatar
Martin Reinecke committed
101
        if not r.success:
102
            logger.error("Problem in Scipy minimization: {}".format(r.message))
103
104
            return hlp._energy, IterationController.ERROR
        return hlp._energy, IterationController.CONVERGED
Martin Reinecke's avatar
Martin Reinecke committed
105
106


107
def NewtonCG(xtol, maxiter, disp=False):
Martin Reinecke's avatar
Martin Reinecke committed
108
109
110
111
112
113
    """Returns a ScipyMinimizer object carrying out the Newton-CG algorithm.

    See Also
    --------
    ScipyMinimizer
    """
Martin Reinecke's avatar
fix    
Martin Reinecke committed
114
    options = {"xtol": xtol, "maxiter": maxiter, "disp": disp}
115
    return ScipyMinimizer("Newton-CG", options, True, None)
Martin Reinecke's avatar
Martin Reinecke committed
116
117


118
def L_BFGS_B(ftol, gtol, maxiter, maxcor=10, disp=False, bounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
119
120
121
122
123
124
    """Returns a ScipyMinimizer object carrying out the L-BFGS-B algorithm.

    See Also
    --------
    ScipyMinimizer
    """
125
    options = {"ftol": ftol, "gtol": gtol, "maxiter": maxiter,
Martin Reinecke's avatar
fix    
Martin Reinecke committed
126
               "maxcor": maxcor, "disp": disp}
127
    return ScipyMinimizer("L-BFGS-B", options, False, bounds)
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148


class ScipyCG(Minimizer):
    def __init__(self, tol, maxiter):
        super(ScipyCG, self).__init__()
        if not dobj.is_numpy():
            raise NotImplementedError
        self._tol = tol
        self._maxiter = maxiter

    def __call__(self, energy, preconditioner=None):
        from scipy.sparse.linalg import LinearOperator as scipy_linop, cg
        from .quadratic_energy import QuadraticEnergy
        if not isinstance(energy, QuadraticEnergy):
            raise ValueError("need a quadratic energy for CG")

        class mymatvec(object):
            def __init__(self, op):
                self._op = op

            def __call__(self, inp):
Martin Reinecke's avatar
Martin Reinecke committed
149
                return _toNdarray(self._op(_toField(inp, self._op.domain)))
150
151

        op = energy._A
Martin Reinecke's avatar
Martin Reinecke committed
152
153
        b = _toNdarray(energy._b)
        sx = _toNdarray(energy.position)
154
155
156
157
158
159
160
161
162
163
        sci_op = scipy_linop(shape=(op.domain.size, op.target.size),
                             matvec=mymatvec(op))
        prec_op = None
        if preconditioner is not None:
            prec_op = scipy_linop(shape=(op.domain.size, op.target.size),
                                  matvec=mymatvec(preconditioner))
        res, stat = cg(sci_op, b, x0=sx, tol=self._tol, M=prec_op,
                       maxiter=self._maxiter)
        stat = (IterationController.CONVERGED if stat >= 0 else
                IterationController.ERROR)
Martin Reinecke's avatar
Martin Reinecke committed
164
        return energy.at(_toField(res, op.domain)), stat