field.py 26.6 KB
Newer Older
csongor's avatar
csongor committed
1 2 3
from __future__ import division
import numpy as np

4
from d2o import distributed_data_object,\
5
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
6

7 8 9
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
csongor's avatar
csongor committed
10

11
from nifty.field_types import FieldType
12

13
from nifty.spaces.space import Space
14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17 18
from nifty.random import Random

csongor's avatar
csongor committed
19 20

POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
theos's avatar
theos committed
21
COMM = getattr(gdi[gc['mpi_module']], gc['default_comm'])
csongor's avatar
csongor committed
22 23


24
class Field(object):
theos's avatar
theos committed
25
    # ---Initialization methods---
26

theos's avatar
theos committed
27 28
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
                 datamodel=None, copy=False):
csongor's avatar
csongor committed
29

30
        self.domain = self._parse_domain(domain=domain, val=val)
31
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
32

33
        self.field_type = self._parse_field_type(field_type, val=val)
34

theos's avatar
theos committed
35 36 37 38 39 40
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
41

theos's avatar
theos committed
42
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
43
                                       val=val,
theos's avatar
theos committed
44 45
                                       domain=self.domain,
                                       field_type=self.field_type)
46

theos's avatar
theos committed
47 48
        self.datamodel = self._parse_datamodel(datamodel=datamodel,
                                               val=val)
csongor's avatar
csongor committed
49 50 51

        self.set_val(new_val=val, copy=copy)

52
    def _parse_domain(self, domain, val=None):
53
        if domain is None:
54 55 56 57
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
58
        elif isinstance(domain, Space):
59
            domain = (domain,)
60 61 62
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
63
        for d in domain:
64
            if not isinstance(d, Space):
csongor's avatar
csongor committed
65
                raise TypeError(about._errors.cstring(
66 67
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
68 69
        return domain

70
    def _parse_field_type(self, field_type, val=None):
71
        if field_type is None:
72 73 74 75
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
76
        elif isinstance(field_type, FieldType):
77
            field_type = (field_type,)
78 79
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
80
        for ft in field_type:
81
            if not isinstance(ft, FieldType):
82
                raise TypeError(about._errors.cstring(
83
                    "ERROR: Given object is not a nifty.FieldType."))
84 85
        return field_type

theos's avatar
theos committed
86 87 88 89 90 91 92 93 94 95
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
96

97
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
98
        if dtype is None:
99 100 101
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
102 103 104 105 106 107 108
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
109

theos's avatar
theos committed
110
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
111

theos's avatar
theos committed
112
        return dtype
113

theos's avatar
theos committed
114
    def _parse_datamodel(self, datamodel, val):
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        if datamodel is None:
            if isinstance(val, distributed_data_object):
                datamodel = val.distribution_strategy
            elif isinstance(val, Field):
                datamodel = val.datamodel
            else:
                about.warnings.cprint("WARNING: Datamodel set to default!")
                datamodel = gc['default_datamodel']
        elif datamodel not in DISTRIBUTION_STRATEGIES['all']:
            raise ValueError(about._errors.cstring(
                    "ERROR: Invalid datamodel!"))
        return datamodel

    # ---Factory methods---
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
                    datamodel=None, **kwargs):
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
                datamodel=datamodel)

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

#        elif random_type == 'syn':
#            pass

csongor's avatar
csongor committed
174
        else:
175 176
            raise KeyError(about._errors.cstring(
                "ERROR: unsupported random key '" + str(random_type) + "'."))
csongor's avatar
csongor committed
177

178
        return random_arguments
csongor's avatar
csongor committed
179

180 181 182 183 184 185 186 187 188 189 190 191 192
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
                raise ValueError(about._errors.cstring(
                    "ERROR: Field has multiple spaces as domain "
                    "but `spaces` is None."))

        if len(spaces) == 0:
            raise ValueError(about._errors.cstring(
                "ERROR: No space for analysis specified."))
        elif len(spaces) > 1:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
            raise ValueError(about._errors.cstring(
                "ERROR: Conversion of only one space at a time is allowed."))

215 216 217 218 219 220
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

221 222 223 224
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

225 226 227 228 229
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

230 231 232
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
                                  datamodel=distribution_strategy,
233 234
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
235

236
        # extract pindex and rho from power_domain
237 238
        pindex = power_domain.pindex
        rho = power_domain.rho
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
            raise ValueError("ERROR: pindex's distribution strategy must be "
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
                    "ERROR: A slicing distributor shall not be reshaped to "
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

316 317 318 319 320 321 322 323 324 325 326
    def power_synthesize(self, spaces=None, real_signal=True):
        # assert that all spaces in `self.domain` are eiher of signal-type or
        # power_space instances
        for sp in self.domain:
            if sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
                    "ERROR: Field has a space in `domain` which is neither "
                    "harmonic nor a PowerSpace.")

        # synthesize random fields in harmonic domain using
        # np.random.multivariate_normal(mean=[0,0], cov=[[0.5,0],[0,0.5]], size=shape)
327

theos's avatar
theos committed
328
    # ---Properties---
329

theos's avatar
theos committed
330
    def set_val(self, new_val=None, copy=False):
331 332
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
333 334 335
            new_val = new_val.copy()
        self._val = new_val
        return self._val
csongor's avatar
csongor committed
336

337 338
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
339
            return self._val.copy()
340
        else:
theos's avatar
theos committed
341
            return self._val
csongor's avatar
csongor committed
342

theos's avatar
theos committed
343 344 345
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
346

theos's avatar
theos committed
347 348 349
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
350

351 352
    @property
    def shape(self):
353 354 355 356 357 358 359
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
360

361
        return global_shape
csongor's avatar
csongor committed
362

363 364
    @property
    def dim(self):
theos's avatar
theos committed
365 366 367 368 369 370 371
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
372

373 374
    @property
    def dof(self):
theos's avatar
theos committed
375 376 377 378 379 380 381 382
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
383
        try:
theos's avatar
theos committed
384
            return reduce(lambda x, y: x * y, volume_tuple)
385
        except TypeError:
theos's avatar
theos committed
386
            return 0
387

theos's avatar
theos committed
388
    # ---Special unary/binary operations---
389

csongor's avatar
csongor committed
390 391 392
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
393 394
        else:
            dtype = np.dtype(dtype)
395

theos's avatar
theos committed
396
        casted_x = self._actual_cast(x, dtype=dtype)
397 398

        for ind, sp in enumerate(self.domain):
399
            casted_x = sp.complement_cast(casted_x,
theos's avatar
theos committed
400
                                          axes=self.domain_axes[ind])
401 402 403

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.complement_cast(casted_x,
theos's avatar
theos committed
404
                                          axes=self.field_type_axes[ind])
405 406

        return casted_x
csongor's avatar
csongor committed
407

theos's avatar
theos committed
408
    def _actual_cast(self, x, dtype=None):
409
        if isinstance(x, Field):
csongor's avatar
csongor committed
410 411 412 413 414
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

415 416 417 418 419
        return_x = distributed_data_object(global_shape=self.shape,
                                           dtype=dtype,
                                           distribution_strategy=self.datamodel)
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
420 421 422 423 424 425 426 427 428 429

    def copy(self, domain=None, dtype=None, field_type=None,
             datamodel=None):
        copied_val = self.get_val(copy=True)
        new_field = self.copy_empty(domain=domain,
                                    dtype=dtype,
                                    field_type=field_type,
                                    datamodel=datamodel)
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
430

theos's avatar
theos committed
431 432 433 434
    def copy_empty(self, domain=None, dtype=None, field_type=None,
                   datamodel=None):
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
435
        else:
theos's avatar
theos committed
436
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
437

theos's avatar
theos committed
438 439 440 441
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
442

theos's avatar
theos committed
443 444 445 446
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
447

theos's avatar
theos committed
448 449
        if datamodel is None:
            datamodel = self.datamodel
csongor's avatar
csongor committed
450

theos's avatar
theos committed
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
                datamodel == self.datamodel):
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
                              datamodel=datamodel)
        return new_field
csongor's avatar
csongor committed
473

theos's avatar
theos committed
474 475 476 477 478 479 480 481 482 483 484 485 486 487
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
            if key != 'val':
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
488
        if inplace:
csongor's avatar
csongor committed
489 490 491 492
            new_field = self
        else:
            new_field = self.copy_empty()

493
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
494

csongor's avatar
csongor committed
495
        if spaces is None:
theos's avatar
theos committed
496 497 498
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
499

500
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
501 502 503 504 505
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
506 507

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
508 509
        return new_field

theos's avatar
theos committed
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

539
    def norm(self, q=2):
csongor's avatar
csongor committed
540 541 542 543 544 545 546 547 548 549 550 551 552 553
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
554
        if q == 2:
555
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
556
        else:
557
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

574
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
575
        new_val = new_val.conjugate()
576
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
577 578 579

        return work_field

theos's avatar
theos committed
580
    # ---General unary/contraction methods---
581

theos's avatar
theos committed
582 583
    def __pos__(self):
        return self.copy()
584

theos's avatar
theos committed
585 586 587 588
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
589 590
        return return_field

theos's avatar
theos committed
591 592 593 594 595
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
596

theos's avatar
theos committed
597 598 599 600 601 602
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
603

theos's avatar
theos committed
604 605 606 607
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
608

theos's avatar
theos committed
609 610 611 612
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
613
        try:
theos's avatar
theos committed
614
            axes_list = reduce(lambda x, y: x+y, axes_list)
615
        except TypeError:
theos's avatar
theos committed
616
            axes_list = ()
csongor's avatar
csongor committed
617

theos's avatar
theos committed
618 619 620
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
621

theos's avatar
theos committed
622 623 624
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
625
        else:
theos's avatar
theos committed
626 627 628 629 630 631 632 633 634 635 636
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
637

theos's avatar
theos committed
638 639
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
640

theos's avatar
theos committed
641 642
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
643

theos's avatar
theos committed
644 645
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
646

theos's avatar
theos committed
647 648
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
649

theos's avatar
theos committed
650 651
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
652

theos's avatar
theos committed
653 654
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
655

theos's avatar
theos committed
656 657
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
658

theos's avatar
theos committed
659 660
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
661

theos's avatar
theos committed
662 663
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
664

theos's avatar
theos committed
665 666
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
667

theos's avatar
theos committed
668 669
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
670

theos's avatar
theos committed
671
    # ---General binary methods---
csongor's avatar
csongor committed
672

theos's avatar
theos committed
673
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
674
        # if other is a field, make sure that the domains match
675
        if isinstance(other, Field):
theos's avatar
theos committed
676 677 678 679
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
680
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
681 682 683 684 685 686
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
                raise ValueError(about._errors.cstring(
                    "ERROR: domains are incompatible."))
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
687

theos's avatar
theos committed
688 689
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
690 691 692 693 694 695

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
696
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
697 698 699
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
700
        return self._binary_helper(other, op='__add__')
701

702
    def __radd__(self, other):
theos's avatar
theos committed
703
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
704 705

    def __iadd__(self, other):
theos's avatar
theos committed
706
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
707 708

    def __sub__(self, other):
theos's avatar
theos committed
709
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
710 711

    def __rsub__(self, other):
theos's avatar
theos committed
712
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
713 714

    def __isub__(self, other):
theos's avatar
theos committed
715
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
716 717

    def __mul__(self, other):
theos's avatar
theos committed
718
        return self._binary_helper(other, op='__mul__')
719

720
    def __rmul__(self, other):
theos's avatar
theos committed
721
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
722 723

    def __imul__(self, other):
theos's avatar
theos committed
724
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
725 726

    def __div__(self, other):
theos's avatar
theos committed
727
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
728 729

    def __rdiv__(self, other):
theos's avatar
theos committed
730
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
731 732

    def __idiv__(self, other):
theos's avatar
theos committed
733
        return self._binary_helper(other, op='__idiv__', inplace=True)
734

csongor's avatar
csongor committed
735
    def __pow__(self, other):
theos's avatar
theos committed
736
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
737 738

    def __rpow__(self, other):
theos's avatar
theos committed
739
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
740 741

    def __ipow__(self, other):
theos's avatar
theos committed
742
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
743 744

    def __lt__(self, other):
theos's avatar
theos committed
745
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
746 747

    def __le__(self, other):
theos's avatar
theos committed
748
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
749 750 751 752 753

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
754
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
755 756 757 758 759

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
760
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
761 762

    def __ge__(self, other):
theos's avatar
theos committed
763
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
764 765

    def __gt__(self, other):
theos's avatar
theos committed
766 767 768 769 770 771 772 773 774 775 776 777 778
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
779

780

781
class EmptyField(Field):
csongor's avatar
csongor committed
782 783
    def __init__(self):
        pass