chain_operator.py 4.16 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2018 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
16
17
18
19
20
21
22
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from .linear_operator import LinearOperator


class ChainOperator(LinearOperator):
Martin Reinecke's avatar
Martin Reinecke committed
23
24
    """Class representing chains of operators."""

Martin Reinecke's avatar
Martin Reinecke committed
25
26
27
    def __init__(self, ops, _callingfrommake=False):
        if not _callingfrommake:
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
28
        super(ChainOperator, self).__init__()
Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        self._ops = ops
        self._capability = self._all_ops
        for op in ops:
            self._capability &= op.capability

    @staticmethod
    def simplify(ops):
        from .scaling_operator import ScalingOperator
        from .diagonal_operator import DiagonalOperator
        # Step 1: verify domains
        for i in range(len(ops)-1):
            if ops[i+1].target != ops[i].domain:
                raise ValueError("domain mismatch")
        # Step 2: unpack ChainOperators
        opsnew = []
        for op in ops:
            if isinstance(op, ChainOperator):
                opsnew += op._ops
            else:
                opsnew.append(op)
        ops = opsnew
        # Step 3: collect ScalingOperators
        fct = 1.
        opsnew = []
        lastdom = ops[-1].domain
        for op in ops:
            if isinstance(op, ScalingOperator):
                fct *= op._factor
            else:
                opsnew.append(op)
        if fct != 1.:
            # try to absorb the factor into a DiagonalOperator
            for i in range(len(opsnew)):
                if isinstance(opsnew[i], DiagonalOperator):
                    opsnew[i] = DiagonalOperator(opsnew[i].diagonal()*fct,
                                                 domain=opsnew[i].domain,
                                                 spaces=opsnew[i]._spaces)
                    fct = 1.
                    break
        if fct != 1:
            # have to add the scaling operator at the end
            opsnew.append(ScalingOperator(fct, lastdom))
        ops = opsnew
        # Step 4: combine DiagonalOperators where possible
        opsnew = []
        for op in ops:
            if (len(opsnew) > 0 and
                    isinstance(opsnew[-1], DiagonalOperator) and
                    isinstance(op, DiagonalOperator) and
                    op._spaces == opsnew[-1]._spaces):
                opsnew[-1] = DiagonalOperator(opsnew[-1].diagonal() *
                                              op.diagonal(),
                                              domain=opsnew[-1].domain,
                                              spaces=opsnew[-1]._spaces)
            else:
                opsnew.append(op)
        ops = opsnew
        return ops

    @staticmethod
    def make(ops):
        ops = tuple(ops)
        ops = ChainOperator.simplify(ops)
        if len(ops) == 1:
            return ops[0]
        return ChainOperator(ops, _callingfrommake=True)
Martin Reinecke's avatar
Martin Reinecke committed
95
96
97

    @property
    def domain(self):
Martin Reinecke's avatar
Martin Reinecke committed
98
        return self._ops[-1].domain
Martin Reinecke's avatar
Martin Reinecke committed
99
100
101

    @property
    def target(self):
Martin Reinecke's avatar
Martin Reinecke committed
102
        return self._ops[0].target
Martin Reinecke's avatar
Martin Reinecke committed
103

Martin Reinecke's avatar
Martin Reinecke committed
104
105
106
107
108
109
110
111
    @property
    def inverse(self):
        return self.make([op.inverse for op in reversed(self._ops)])

    @property
    def adjoint(self):
        return self.make([op.adjoint for op in reversed(self._ops)])

Martin Reinecke's avatar
Martin Reinecke committed
112
113
    @property
    def capability(self):
Martin Reinecke's avatar
Martin Reinecke committed
114
        return self._capability
Martin Reinecke's avatar
Martin Reinecke committed
115
116
117

    def apply(self, x, mode):
        self._check_mode(mode)
Martin Reinecke's avatar
Martin Reinecke committed
118
119
120
121
        t_ops = self._ops if mode & self._backwards else reversed(self._ops)
        for op in t_ops:
            x = op.apply(x, mode)
        return x