Wiener_Filter.ipynb 18.3 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# A NIFTy demonstration"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "## IFT: Big Picture\n",
    "IFT starting point:\n",
    "\n",
    "$$d = Rs+n$$\n",
    "\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
27
    "Typically, $s$ is a continuous field, $d$ a discrete data vector. Particularly, $R$ is not invertible.\n",
Philipp Arras's avatar
Philipp Arras committed
28
29
30
31
32
33
    "\n",
    "IFT aims at **inverting** the above uninvertible problem in the **best possible way** using Bayesian statistics.\n",
    "\n",
    "\n",
    "## NIFTy\n",
    "\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
34
    "NIFTy (Numerical Information Field Theory) is a Python framework in which IFT problems can be tackled easily.\n",
Philipp Arras's avatar
Philipp Arras committed
35
36
37
38
39
    "\n",
    "Main Interfaces:\n",
    "\n",
    "- **Spaces**: Cartesian, 2-Spheres (Healpix, Gauss-Legendre) and their respective harmonic spaces.\n",
    "- **Fields**: Defined on spaces.\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
40
    "- **Operators**: Acting on fields."
Philipp Arras's avatar
Philipp Arras committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "## Wiener Filter: Formulae\n",
    "\n",
    "### Assumptions\n",
    "\n",
    "- $d=Rs+n$, $R$ linear operator.\n",
    "- $\\mathcal P (s) = \\mathcal G (s,S)$, $\\mathcal P (n) = \\mathcal G (n,N)$ where $S, N$ are positive definite matrices.\n",
    "\n",
    "### Posterior\n",
    "The Posterior is given by:\n",
    "\n",
    "$$\\mathcal P (s|d) \\propto P(s,d) = \\mathcal G(d-Rs,N) \\,\\mathcal G(s,S) \\propto \\mathcal G (m,D) $$\n",
    "\n",
    "where\n",
    "$$\\begin{align}\n",
    "m &= Dj \\\\\n",
    "D^{-1}&= (S^{-1} +R^\\dagger N^{-1} R )\\\\\n",
    "j &= R^\\dagger N^{-1} d\n",
    "\\end{align}$$\n",
    "\n",
    "Let us implement this in NIFTy!"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "## Wiener Filter: Example\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
83
84
    "- We assume statistical homogeneity and isotropy. Therefore the signal covariance $S$ is diagonal in harmonic space, and is described by a one-dimensional power spectrum, assumed here as $$P(k) = P_0\\,\\left(1+\\left(\\frac{k}{k_0}\\right)^2\\right)^{-\\gamma /2},$$\n",
    "with $P_0 = 0.2, k_0 = 5, \\gamma = 4$.\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
85
    "- $N = 0.2 \\cdot \\mathbb{1}$.\n",
Martin Reinecke's avatar
Martin Reinecke committed
86
87
    "- Number of data points $N_{pix} = 512$.\n",
    "- reconstruction in harmonic space.\n",
Philipp Arras's avatar
Philipp Arras committed
88
    "- Response operator:\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
89
    "$$R = FFT_{\\text{harmonic} \\rightarrow \\text{position}}$$\n"
Philipp Arras's avatar
Philipp Arras committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "N_pixels = 512     # Number of pixels\n",
    "\n",
    "def pow_spec(k):\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
105
106
    "    P0, k0, gamma = [.2, 5, 4]\n",
    "    return P0 / ((1. + (k/k0)**2)**(gamma / 2))"
Philipp Arras's avatar
Philipp Arras committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Wiener Filter: Implementation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "source": [
    "### Import Modules"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
142
    "np.random.seed(40)\n",
Philipp Arras's avatar
Philipp Arras committed
143
    "import nifty5 as ift\n",
144
145
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline"
Philipp Arras's avatar
Philipp Arras committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Implement Propagator"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
169
    "def Curvature(R, N, Sh):\n",
Martin Reinecke's avatar
Martin Reinecke committed
170
    "    IC = ift.GradientNormController(iteration_limit=50000,\n",
171
172
    "                                    tol_abs_gradnorm=0.1)\n",
    "    inverter = ift.ConjugateGradient(controller=IC)\n",
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
173
174
    "    # WienerFilterCurvature is (R.adjoint*N.inverse*R + Sh.inverse) plus some handy\n",
    "    # helper methods.\n",
Martin Reinecke's avatar
Martin Reinecke committed
175
    "    return ift.library.WienerFilterCurvature(R,N,Sh,inverter)"
Philipp Arras's avatar
Philipp Arras committed
176
177
178
179
180
181
182
183
184
185
186
187
188
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Conjugate Gradient Preconditioning\n",
    "\n",
    "- $D$ is defined via:\n",
Martin Reinecke's avatar
Martin Reinecke committed
189
    "$$D^{-1} = \\mathcal S_h^{-1} + R^\\dagger N^{-1} R.$$\n",
Philipp Arras's avatar
Philipp Arras committed
190
191
    "In the end, we want to apply $D$ to $j$, i.e. we need the inverse action of $D^{-1}$. This is done numerically (algorithm: *Conjugate Gradient*). \n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
192
    "<!--\n",
Philipp Arras's avatar
Philipp Arras committed
193
194
195
196
197
198
    "- One can define the *condition number* of a non-singular and normal matrix $A$:\n",
    "$$\\kappa (A) := \\frac{|\\lambda_{\\text{max}}|}{|\\lambda_{\\text{min}}|},$$\n",
    "where $\\lambda_{\\text{max}}$ and $\\lambda_{\\text{min}}$ are the largest and smallest eigenvalue of $A$, respectively.\n",
    "\n",
    "- The larger $\\kappa$ the slower Conjugate Gradient.\n",
    "\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
199
    "- By default, conjugate gradient solves: $D^{-1} m = j$ for $m$, where $D^{-1}$ can be badly conditioned. If one knows a non-singular matrix $T$ for which $TD^{-1}$ is better conditioned, one can solve the equivalent problem:\n",
Philipp Arras's avatar
Philipp Arras committed
200
201
202
203
204
    "$$\\tilde A m = \\tilde j,$$\n",
    "where $\\tilde A = T D^{-1}$ and $\\tilde j = Tj$.\n",
    "\n",
    "- In our case $S^{-1}$ is responsible for the bad conditioning of $D$ depending on the chosen power spectrum. Thus, we choose\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
205
206
    "$$T = \\mathcal F^\\dagger S_h^{-1} \\mathcal F.$$\n",
    "-->"
Philipp Arras's avatar
Philipp Arras committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Generate Mock data\n",
    "\n",
    "- Generate a field $s$ and $n$ with given covariances.\n",
    "- Calculate $d$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Martin Reinecke's avatar
Martin Reinecke committed
226
   "metadata": {},
Philipp Arras's avatar
Philipp Arras committed
227
228
   "outputs": [],
   "source": [
229
230
231
    "s_space = ift.RGSpace(N_pixels)\n",
    "h_space = s_space.get_default_codomain()\n",
    "HT = ift.HarmonicTransformOperator(h_space, target=s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
232
233
    "\n",
    "# Operators\n",
234
235
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
    "R = HT #*ift.create_harmonic_smoothing_operator((h_space,), 0, 0.02)\n",
Philipp Arras's avatar
Philipp Arras committed
236
237
    "\n",
    "# Fields and data\n",
238
    "sh = Sh.draw_sample()\n",
239
    "noiseless_data=R(sh)\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
240
    "noise_amplitude = np.sqrt(0.2)\n",
241
242
243
    "N = ift.ScalingOperator(noise_amplitude**2, s_space)\n",
    "\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
244
    "                          std=noise_amplitude, mean=0)\n",
245
246
    "d = noiseless_data + n\n",
    "j = R.adjoint_times(N.inverse_times(d))\n",
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
247
248
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse"
Philipp Arras's avatar
Philipp Arras committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Run Wiener Filter"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "m = D(j)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
283
    "### Signal Reconstruction"
Philipp Arras's avatar
Philipp Arras committed
284
285
286
287
288
289
290
291
292
293
294
295
296
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "# Get signal data and reconstruction data\n",
Martin Reinecke's avatar
Martin Reinecke committed
297
298
    "s_data = HT(sh).to_global_data()\n",
    "m_data = HT(m).to_global_data()\n",
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
299
    "d_data = d.to_global_data()\n",
Philipp Arras's avatar
Philipp Arras committed
300
    "\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
301
    "plt.figure(figsize=(15,10))\n",
Martin Reinecke's avatar
Martin Reinecke committed
302
303
304
    "plt.plot(s_data, 'r', label=\"Signal\", linewidth=3)\n",
    "plt.plot(d_data, 'k.', label=\"Data\")\n",
    "plt.plot(m_data, 'k', label=\"Reconstruction\",linewidth=3)\n",
Philipp Arras's avatar
Philipp Arras committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    "plt.title(\"Reconstruction\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
320
    "plt.figure(figsize=(15,10))\n",
Martin Reinecke's avatar
Martin Reinecke committed
321
322
323
    "plt.plot(s_data - s_data, 'r', label=\"Signal\", linewidth=3)\n",
    "plt.plot(d_data - s_data, 'k.', label=\"Data\")\n",
    "plt.plot(m_data - s_data, 'k', label=\"Reconstruction\",linewidth=3)\n",
324
    "plt.axhspan(-noise_amplitude,noise_amplitude, facecolor='0.9', alpha=.5)\n",
Philipp Arras's avatar
Philipp Arras committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    "plt.title(\"Residuals\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Power Spectrum"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
351
352
    "s_power_data = ift.power_analyze(sh).to_global_data()\n",
    "m_power_data = ift.power_analyze(m).to_global_data()\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
353
    "plt.figure(figsize=(15,10))\n",
Philipp Arras's avatar
Philipp Arras committed
354
355
356
357
358
    "plt.loglog()\n",
    "plt.xlim(1, int(N_pixels/2))\n",
    "ymin = min(m_power_data)\n",
    "plt.ylim(ymin, 1)\n",
    "xs = np.arange(1,int(N_pixels/2),.1)\n",
Martin Reinecke's avatar
Martin Reinecke committed
359
360
361
    "plt.plot(xs, pow_spec(xs), label=\"True Power Spectrum\", color='k',alpha=0.5)\n",
    "plt.plot(s_power_data, 'r', label=\"Signal\")\n",
    "plt.plot(m_power_data, 'k', label=\"Reconstruction\")\n",
362
363
    "plt.axhline(noise_amplitude**2 / N_pixels, color=\"k\", linestyle='--', label=\"Noise level\", alpha=.5)\n",
    "plt.axhspan(noise_amplitude**2 / N_pixels, ymin, facecolor='0.9', alpha=.5)\n",
Philipp Arras's avatar
Philipp Arras committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    "plt.title(\"Power Spectrum\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Wiener Filter on Incomplete Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "# Operators\n",
391
392
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
    "N = ift.ScalingOperator(noise_amplitude**2,s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
393
394
395
    "# R is defined below\n",
    "\n",
    "# Fields\n",
396
    "sh = Sh.draw_sample()\n",
397
398
399
    "s = HT(sh)\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
    "                      std=noise_amplitude, mean=0)"
Philipp Arras's avatar
Philipp Arras committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Partially Lose Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "l = int(N_pixels * 0.2)\n",
424
    "h = int(N_pixels * 0.2 * 2)\n",
Philipp Arras's avatar
Philipp Arras committed
425
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
426
427
428
    "mask = np.full(s_space.shape, 1.)\n",
    "mask[l:h] = 0\n",
    "mask = ift.Field.from_global_data(s_space, mask)\n",
Philipp Arras's avatar
Philipp Arras committed
429
    "\n",
430
    "R = ift.DiagonalOperator(mask)*HT\n",
Martin Reinecke's avatar
Martin Reinecke committed
431
432
433
    "n = n.to_global_data()\n",
    "n[l:h] = 0\n",
    "n = ift.Field.from_global_data(s_space, n)\n",
Philipp Arras's avatar
Philipp Arras committed
434
    "\n",
435
    "d = R(sh) + n"
Philipp Arras's avatar
Philipp Arras committed
436
437
438
439
440
441
442
443
444
445
446
447
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
448
449
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse\n",
Philipp Arras's avatar
Philipp Arras committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "m = D(j)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Compute Uncertainty\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
469
    "scrolled": true
Philipp Arras's avatar
Philipp Arras committed
470
471
472
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
473
    "m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 200)"
Philipp Arras's avatar
Philipp Arras committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Get data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "# Get signal data and reconstruction data\n",
Martin Reinecke's avatar
Martin Reinecke committed
498
499
500
    "s_data = s.to_global_data()\n",
    "m_data = HT(m).to_global_data()\n",
    "m_var_data = m_var.to_global_data()\n",
Martin Reinecke's avatar
Martin Reinecke committed
501
    "uncertainty = np.sqrt(m_var_data)\n",
Martin Reinecke's avatar
Martin Reinecke committed
502
    "d_data = d.to_global_data()\n",
Philipp Arras's avatar
Philipp Arras committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    "\n",
    "# Set lost data to NaN for proper plotting\n",
    "d_data[d_data == 0] = np.nan"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "fig = plt.figure(figsize=(15,10))\n",
Martin Reinecke's avatar
Martin Reinecke committed
519
520
521
522
523
    "plt.axvspan(l, h, facecolor='0.8',alpha=0.5)\n",
    "plt.fill_between(range(N_pixels), m_data - uncertainty, m_data + uncertainty, facecolor='0.5', alpha=0.5)\n",
    "plt.plot(s_data, 'r', label=\"Signal\", alpha=1, linewidth=3)\n",
    "plt.plot(d_data, 'k.', label=\"Data\")\n",
    "plt.plot(m_data, 'k', label=\"Reconstruction\", linewidth=3)\n",
Philipp Arras's avatar
Philipp Arras committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    "plt.title(\"Reconstruction of incomplete data\")\n",
    "plt.legend()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# 2d Example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Martin Reinecke's avatar
Martin Reinecke committed
542
   "metadata": {},
Philipp Arras's avatar
Philipp Arras committed
543
544
545
   "outputs": [],
   "source": [
    "N_pixels = 256      # Number of pixels\n",
Martin Reinecke's avatar
Martin Reinecke committed
546
    "sigma2 = 2.         # Noise variance\n",
Philipp Arras's avatar
Philipp Arras committed
547
548
    "\n",
    "def pow_spec(k):\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
549
    "    P0, k0, gamma = [.2, 2, 4]\n",
Martin Reinecke's avatar
Martin Reinecke committed
550
    "    return P0 * (1. + (k/k0)**2)**(-gamma/2)\n",
Philipp Arras's avatar
Philipp Arras committed
551
    "\n",
552
    "s_space = ift.RGSpace([N_pixels, N_pixels])"
Philipp Arras's avatar
Philipp Arras committed
553
554
555
556
557
558
559
560
561
562
563
564
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
565
    "h_space = s_space.get_default_codomain()\n",
Martin Reinecke's avatar
Martin Reinecke committed
566
    "HT = ift.HarmonicTransformOperator(h_space,s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
567
568
    "\n",
    "# Operators\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
569
570
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
    "N = ift.ScalingOperator(sigma2,s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
571
572
    "\n",
    "# Fields and data\n",
573
    "sh = Sh.draw_sample()\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
574
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
Philipp Arras's avatar
Philipp Arras committed
575
576
577
578
    "                      std=np.sqrt(sigma2), mean=0)\n",
    "\n",
    "# Lose some data\n",
    "\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
579
580
    "l = int(N_pixels * 0.33)\n",
    "h = int(N_pixels * 0.33 * 2)\n",
Philipp Arras's avatar
Philipp Arras committed
581
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
582
583
584
    "mask = np.full(s_space.shape, 1.)\n",
    "mask[l:h,l:h] = 0.\n",
    "mask = ift.Field.from_global_data(s_space, mask)\n",
Philipp Arras's avatar
Philipp Arras committed
585
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
586
    "R = ift.DiagonalOperator(mask)*HT\n",
Martin Reinecke's avatar
Martin Reinecke committed
587
588
589
    "n = n.to_global_data()\n",
    "n[l:h, l:h] = 0\n",
    "n = ift.Field.from_global_data(s_space, n)\n",
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
590
591
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse\n",
Philipp Arras's avatar
Philipp Arras committed
592
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
593
    "d = R(sh) + n\n",
Philipp Arras's avatar
Philipp Arras committed
594
595
596
597
598
599
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "\n",
    "# Run Wiener filter\n",
    "m = D(j)\n",
    "\n",
    "# Uncertainty\n",
Martin Reinecke's avatar
Martin Reinecke committed
600
    "m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 20)\n",
Philipp Arras's avatar
Philipp Arras committed
601
602
    "\n",
    "# Get data\n",
Martin Reinecke's avatar
Martin Reinecke committed
603
604
605
606
    "s_data = HT(sh).to_global_data()\n",
    "m_data = HT(m).to_global_data()\n",
    "m_var_data = m_var.to_global_data()\n",
    "d_data = d.to_global_data()\n",
Philipp Arras's avatar
Philipp Arras committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    "uncertainty = np.sqrt(np.abs(m_var_data))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "cm = ['magma', 'inferno', 'plasma', 'viridis'][1]\n",
    "\n",
    "mi = np.min(s_data)\n",
    "ma = np.max(s_data)\n",
    "\n",
    "fig, axes = plt.subplots(1, 2, figsize=(15, 7))\n",
    "\n",
    "data = [s_data, d_data]\n",
    "caption = [\"Signal\", \"Data\"]\n",
    "\n",
    "for ax in axes.flat:\n",
    "    im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cm, vmin=mi,\n",
    "                   vmax=ma)\n",
    "    ax.set_title(caption.pop(0))\n",
    "\n",
    "fig.subplots_adjust(right=0.8)\n",
    "cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])\n",
    "fig.colorbar(im, cax=cbar_ax)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "mi = np.min(s_data)\n",
    "ma = np.max(s_data)\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
653
    "fig, axes = plt.subplots(3, 2, figsize=(15, 22.5))\n",
654
    "sample = HT(curv.draw_sample(from_inverse=True)+m).to_global_data()\n",
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
655
    "post_mean = (m_mean + HT(m)).to_global_data()\n",
Philipp Arras's avatar
Philipp Arras committed
656
    "\n",
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
657
658
    "data = [s_data, m_data, post_mean, sample, s_data - m_data, uncertainty]\n",
    "caption = [\"Signal\", \"Reconstruction\", \"Posterior mean\", \"Sample\", \"Residuals\", \"Uncertainty Map\"]\n",
Philipp Arras's avatar
Philipp Arras committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    "\n",
    "for ax in axes.flat:\n",
    "    im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cm, vmin=mi, vmax=ma)\n",
    "    ax.set_title(caption.pop(0))\n",
    "\n",
    "fig.subplots_adjust(right=0.8)\n",
    "cbar_ax = fig.add_axes([.85, 0.15, 0.05, 0.7])\n",
    "fig.colorbar(im, cax=cbar_ax)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Is the uncertainty map reliable?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
690
    "precise = (np.abs(s_data-m_data) < uncertainty)\n",
Philipp Arras's avatar
Philipp Arras committed
691
692
    "print(\"Error within uncertainty map bounds: \" + str(np.sum(precise) * 100 / N_pixels**2) + \"%\")\n",
    "\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
693
    "plt.figure(figsize=(15,10))\n",
Philipp Arras's avatar
Philipp Arras committed
694
    "plt.imshow(precise.astype(float), cmap=\"brg\")\n",
Martin Reinecke's avatar
Martin Reinecke committed
695
    "plt.colorbar()"
Philipp Arras's avatar
Philipp Arras committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# Start Coding\n",
    "## NIFTy Repository + Installation guide\n",
    "\n",
    "https://gitlab.mpcdf.mpg.de/ift/NIFTy\n",
    "\n",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
711
    "NIFTy v4 **more or less stable!**"
Philipp Arras's avatar
Philipp Arras committed
712
713
714
715
716
717
   ]
  }
 ],
 "metadata": {
  "celltoolbar": "Slideshow",
  "kernelspec": {
Martin Reinecke's avatar
Martin Reinecke committed
718
   "display_name": "Python 2",
Philipp Arras's avatar
Philipp Arras committed
719
   "language": "python",
Martin Reinecke's avatar
Martin Reinecke committed
720
   "name": "python2"
Philipp Arras's avatar
Philipp Arras committed
721
722
723
724
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
Martin Reinecke's avatar
Martin Reinecke committed
725
    "version": 2
Philipp Arras's avatar
Philipp Arras committed
726
727
728
729
730
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
Martin Reinecke's avatar
Martin Reinecke committed
731
732
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
Philipp Arras's avatar
Philipp Arras committed
733
734
735
736
737
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}