space.py 9.34 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2013 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46
47
48
49
50
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

51
52
53
54
55
56
57
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
58
59
60
61
62
63
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

64
65
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

88
89
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
90
91
    .. automodule:: nifty

92
93
94
95
96
97
98
99
100
101
102
103
104
105
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
106

107
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
108

109
110
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
111

112
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
113

114
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
115

116
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
117

118
119
120
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
141
142
143

"""
from __future__ import division
144
145
146

import abc

Marco Selig's avatar
Marco Selig committed
147
148
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
149
150
from keepers import Loggable,\
                    Versionable
Ultimanet's avatar
Ultimanet committed
151

152

Theo Steininger's avatar
Theo Steininger committed
153
class Space(Versionable, Loggable, object):
Marco Selig's avatar
Marco Selig committed
154
    """
Ultimanet's avatar
Ultimanet committed
155
156
157
158
159
160
161
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/
Marco Selig's avatar
Marco Selig committed
162

Ultimanet's avatar
Ultimanet committed
163
        NIFTY subclass for unstructured spaces.
Marco Selig's avatar
Marco Selig committed
164

Ultimanet's avatar
Ultimanet committed
165
166
        Unstructured spaces are lists of values without any geometrical
        information.
Marco Selig's avatar
Marco Selig committed
167
168
169

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
170
171
        num : int
            Number of points.
172
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
173
            Data type of the field values (default: None).
Marco Selig's avatar
Marco Selig committed
174

Ultimanet's avatar
Ultimanet committed
175
        Attributes
Marco Selig's avatar
Marco Selig committed
176
        ----------
Ultimanet's avatar
Ultimanet committed
177
178
        para : numpy.ndarray
            Array containing the number of points.
179
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
180
181
182
183
184
185
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that a :py:class:`point_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`point_space`, which is always 1.
Marco Selig's avatar
Marco Selig committed
186
    """
187

188
189
190
    __metaclass__ = abc.ABCMeta

    def __init__(self, dtype=np.dtype('float')):
Ultimanet's avatar
Ultimanet committed
191
192
        """
            Sets the attributes for a point_space class instance.
Marco Selig's avatar
Marco Selig committed
193

Ultimanet's avatar
Ultimanet committed
194
195
196
197
            Parameters
            ----------
            num : int
                Number of points.
198
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
199
                Data type of the field values (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
200

Ultimanet's avatar
Ultimanet committed
201
202
203
204
            Returns
            -------
            None.
        """
205

206
        # parse dtype
207
        self.dtype = np.dtype(dtype)
208

Theo Steininger's avatar
Theo Steininger committed
209
        self._ignore_for_hash = ['_global_id']
210

Ultima's avatar
Ultima committed
211
212
213
    def __hash__(self):
        # Extract the identifying parts from the vars(self) dict.
        result_hash = 0
Theo Steininger's avatar
Theo Steininger committed
214
215
        for key in sorted(vars(self).keys()):
            item = vars(self)[key]
216
            if key in self._ignore_for_hash or key == '_ignore_for_hash':
Ultima's avatar
Ultima committed
217
                continue
theos's avatar
theos committed
218
            result_hash ^= item.__hash__() ^ int(hash(key)/117)
Ultima's avatar
Ultima committed
219
220
        return result_hash

theos's avatar
theos committed
221
222
223
224
225
    def __eq__(self, x):
        if isinstance(x, type(self)):
            return hash(self) == hash(x)
        else:
            return False
226

theos's avatar
theos committed
227
228
229
    def __ne__(self, x):
        return not self.__eq__(x)

230
231
232
    @abc.abstractproperty
    def harmonic(self):
        raise NotImplementedError
233

234
    @abc.abstractproperty
235
    def shape(self):
236
237
        raise NotImplementedError(
            "There is no generic shape for the Space base class.")
Marco Selig's avatar
Marco Selig committed
238

239
    @abc.abstractproperty
240
    def dim(self):
241
242
        raise NotImplementedError(
            "There is no generic dim for the Space base class.")
Marco Selig's avatar
Marco Selig committed
243

244
    @abc.abstractproperty
245
    def total_volume(self):
246
247
        raise NotImplementedError(
            "There is no generic volume for the Space base class.")
248

249
250
251
    @abc.abstractmethod
    def copy(self):
        return self.__class__(dtype=self.dtype)
252

253
    @abc.abstractmethod
254
    def weight(self, x, power=1, axes=None, inplace=False):
Marco Selig's avatar
Marco Selig committed
255
        """
Ultimanet's avatar
Ultimanet committed
256
257
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.
Marco Selig's avatar
Marco Selig committed
258
259
260

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
261
262
263
264
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
Marco Selig's avatar
Marco Selig committed
265
266

            Returns
Ultimanet's avatar
Ultimanet committed
267
268
269
            -------
            y : numpy.ndarray
                Weighted array.
Marco Selig's avatar
Marco Selig committed
270
        """
271
        raise NotImplementedError
Ultima's avatar
Ultima committed
272

273
274
275
276
    def pre_cast(self, x, axes=None):
        return x

    def post_cast(self, x, axes=None):
277
278
        return x

279
    def get_distance_array(self, distribution_strategy):
280
        raise NotImplementedError(
281
282
            "There is no generic distance structure for Space base class.")

283
    def get_fft_smoothing_kernel_function(self, sigma):
284
285
        raise NotImplementedError(
            "There is no generic co-smoothing kernel for Space base class.")
286

287
288
289
    def hermitian_decomposition(self, x, axes=None):
        raise NotImplementedError

290
    def __repr__(self):
Ultima's avatar
Ultima committed
291
292
        string = ""
        string += str(type(self)) + "\n"
293
        string += "dtype: " + str(self.dtype) + "\n"
Ultima's avatar
Ultima committed
294
        return string
Theo Steininger's avatar
Theo Steininger committed
295
296
297
298
299
300
301
302
303
304
305
306

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
        hdf5_group.attrs['dtype'] = self.dtype.name

        return None

    @classmethod
    def _from_hdf5(cls, hdf5_group, repository):
        result = cls(dtype=np.dtype(hdf5_group.attrs['dtype']))
        return result