sugar.py 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

18
import sys
19
from time import time
20

21
import numpy as np
22

23
from .logger import logger
24 25
from . import dobj, utilities
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
26
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
27
from .field import Field
28
from .logger import logger
Martin Reinecke's avatar
Martin Reinecke committed
29 30
from .multi_domain import MultiDomain
from .multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
31
from .operators.block_diagonal_operator import BlockDiagonalOperator
Martin Reinecke's avatar
Martin Reinecke committed
32
from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
33
from .operators.distributors import PowerDistributor
34
from .operators.operator import Operator
Lukas Platz's avatar
Lukas Platz committed
35
from .plot import Plot
36

Martin Reinecke's avatar
step 1  
Martin Reinecke committed
37 38
__all__ = ['PS_field', 'power_analyze', 'create_power_operator',
           'create_harmonic_smoothing_operator', 'from_random',
39
           'full', 'from_global_data', 'from_local_data',
Jakob Knollmueller's avatar
Jakob Knollmueller committed
40
           'makeDomain', 'sqrt', 'exp', 'log', 'tanh', 'sigmoid',
Lukas Platz's avatar
fixup  
Lukas Platz committed
41
           'sin', 'cos', 'tan', 'sinh', 'cosh', 'log10',
42
           'absolute', 'one_over', 'clip', 'sinc', "log1p", "expm1",
43
           'conjugate', 'get_signal_variance', 'makeOp', 'domain_union',
Philipp Arras's avatar
Philipp Arras committed
44 45
           'get_default_codomain', 'single_plot', 'exec_time',
           'calculate_position']
46

47

48
def PS_field(pspace, func):
Martin Reinecke's avatar
Martin Reinecke committed
49 50 51 52 53 54 55 56
    """Convenience function sampling a power spectrum

    Parameters
    ----------
    pspace : PowerSpace
        space at whose `k_lengths` the power spectrum function is evaluated
    func : function taking and returning a numpy.ndarray(float)
        the power spectrum function
Martin Reinecke's avatar
Martin Reinecke committed
57

Martin Reinecke's avatar
Martin Reinecke committed
58 59
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
60 61
    Field
        A field defined on (pspace,) containing the computed function values
Martin Reinecke's avatar
Martin Reinecke committed
62
    """
Martin Reinecke's avatar
Martin Reinecke committed
63 64 65
    if not isinstance(pspace, PowerSpace):
        raise TypeError
    data = dobj.from_global_data(func(pspace.k_lengths))
66
    return Field(DomainTuple.make(pspace), data)
Martin Reinecke's avatar
Martin Reinecke committed
67

Martin Reinecke's avatar
Martin Reinecke committed
68

69 70 71 72
def get_signal_variance(spec, space):
    """
    Computes how much a field with a given power spectrum will vary in space

73
    This is a small helper function that computes the expected variance
74 75 76 77 78 79 80 81
    of a harmonically transformed sample of this power spectrum.

    Parameters
    ---------
    spec: method
        a method that takes one k-value and returns the power spectrum at that
        location
    space: PowerSpace or any harmonic Domain
Martin Reinecke's avatar
Martin Reinecke committed
82 83 84 85
        If this function is given a harmonic domain, it creates the naturally
        binned PowerSpace to that domain.
        The field, for which the signal variance is then computed, is assumed
        to have this PowerSpace as naturally binned PowerSpace
86 87 88 89
    """
    if space.harmonic:
        space = PowerSpace(space)
    if not isinstance(space, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
90 91
        raise ValueError(
            "space must be either a harmonic space or Power space.")
92 93 94 95 96
    field = PS_field(space, spec)
    dist = PowerDistributor(space.harmonic_partner, space)
    k_field = dist(field)
    return k_field.weight(2).sum()

97

98 99
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
100 101
    pd = PowerDistributor(field.domain, power_domain, idx)
    return pd.adjoint_times(field.weight(1)).weight(-1)  # divides by bin size
102 103


Martin Reinecke's avatar
Martin Reinecke committed
104 105
# MR FIXME: this function is not well suited for analyzing more than one
# subdomain at once, because it allows only one set of binbounds.
106 107
def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
108
    """Computes the power spectrum for a subspace of `field`.
109 110

    Creates a PowerSpace for the space addressed by `spaces` with the given
111
    binning and computes the power spectrum as a :class:`Field` over this
112
    PowerSpace. This can only be done if the subspace to  be analyzed is a
Martin Reinecke's avatar
Martin Reinecke committed
113 114
    harmonic space. The resulting field has the same units as the square of the
    initial field.
115 116 117

    Parameters
    ----------
Philipp Arras's avatar
Fixups  
Philipp Arras committed
118
    field : Field
119
        The field to be analyzed
Martin Reinecke's avatar
Martin Reinecke committed
120 121 122
    spaces : None or int or tuple of int, optional
        The indices of subdomains for which the power spectrum shall be
        computed.
Martin Reinecke's avatar
Martin Reinecke committed
123
        If None, all subdomains will be converted.
124
        (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
125
    binbounds : None or array-like, optional
126
        Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
127 128
        if binbounds is None : bins are inferred.
    keep_phase_information : bool, optional
129
        If False, return a real-valued result containing the power spectrum
130
        of `field`.
131
        If True, return a complex-valued result whose real component
132 133 134
        contains the power spectrum computed from the real part of `field`,
        and whose imaginary component contains the power
        spectrum computed from the imaginary part of `field`.
135 136 137 138 139 140
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
Philipp Arras's avatar
Fixups  
Philipp Arras committed
141
    Field
142
        The output object. Its domain is a PowerSpace and it contains
Martin Reinecke's avatar
Martin Reinecke committed
143
        the power spectrum of `field`.
144 145 146 147
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
148 149
            logger.warning("WARNING: Field has a space in `domain` which is "
                           "neither harmonic nor a PowerSpace.")
150

151
    spaces = utilities.parse_spaces(spaces, len(field.domain))
152 153 154 155

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

Martin Reinecke's avatar
Martin Reinecke committed
156
    field_real = not utilities.iscomplextype(field.dtype)
157 158 159
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

160 161 162
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
163 164 165 166
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
167 168

    for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
169
        parts = [_single_power_analyze(part, space_index, binbounds)
170 171 172 173 174
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
175
def _create_power_field(domain, power_spectrum):
Philipp Arras's avatar
Philipp Arras committed
176
    if not callable(power_spectrum):  # we have a Field defined on a PowerSpace
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
177 178 179 180 181 182 183
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
184
        fp = power_spectrum
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
185 186
    else:
        power_domain = PowerSpace(domain)
187
        fp = PS_field(power_domain, power_spectrum)
188

Martin Reinecke's avatar
Martin Reinecke committed
189
    return PowerDistributor(domain, power_domain)(fp)
190

191

192
def create_power_operator(domain, power_spectrum, space=None):
193
    """Creates a diagonal operator with the given power spectrum.
194

Philipp Arras's avatar
Philipp Arras committed
195
    Constructs a diagonal operator that is defined on the specified domain.
196

197 198
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
199
    domain : Domain, tuple of Domain or DomainTuple
Philipp Arras's avatar
Philipp Arras committed
200
        Domain on which the power operator shall be defined.
Martin Reinecke's avatar
Martin Reinecke committed
201 202
    power_spectrum : callable or Field
        An object that contains the power spectrum as a function of k.
Martin Reinecke's avatar
Martin Reinecke committed
203
    space : int
Martin Reinecke's avatar
Martin Reinecke committed
204
        the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
205

206 207
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
208 209
    DiagonalOperator
        An operator that implements the given power spectrum.
210
    """
Martin Reinecke's avatar
Martin Reinecke committed
211
    domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
212
    space = utilities.infer_space(domain, space)
Martin Reinecke's avatar
Martin Reinecke committed
213 214
    field = _create_power_field(domain[space], power_spectrum)
    return DiagonalOperator(field, domain, space)
215

216

217
def create_harmonic_smoothing_operator(domain, space, sigma):
Martin Reinecke's avatar
Martin Reinecke committed
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    """Creates an operator which smoothes a subspace of a harmonic domain.

    Parameters
    ----------
    domain: DomainTuple
        The total domain and target of the operator
    space : int
        the index of the subspace on which the operator acts.
        This must be a harmonic space
    sigma : float
        The sigma of the Gaussian smoothing kernel

    Returns
    -------
    DiagonalOperator
        The requested smoothing operator
    """
235 236 237
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)
Martin Reinecke's avatar
step 1  
Martin Reinecke committed
238 239 240


def full(domain, val):
Martin Reinecke's avatar
Martin Reinecke committed
241 242 243 244 245 246 247 248 249 250 251
    """Convenience function creating Fields/MultiFields with uniform values.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
    val : scalar value
        the uniform value to be placed into all entries of the result

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
252 253
    Field or MultiField
        The newly created uniform field
Martin Reinecke's avatar
Martin Reinecke committed
254
    """
Martin Reinecke's avatar
step 1  
Martin Reinecke committed
255 256 257 258 259 260
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.full(domain, val)
    return Field.full(domain, val)


def from_random(random_type, domain, dtype=np.float64, **kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    """Convenience function creating Fields/MultiFields with random values.

    Parameters
    ----------
    random_type : 'pm1', 'normal', or 'uniform'
            The random distribution to use.
    domain : Domainoid
        the intended domain of the output field
    dtype : type
        data type of the output field (e.g. numpy.float64)
    **kwargs : additional parameters for the random distribution
        ('mean' and 'std' for 'normal', 'low' and 'high' for 'uniform')

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
276 277
    Field or MultiField
        The newly created random field
Martin Reinecke's avatar
Martin Reinecke committed
278
    """
Martin Reinecke's avatar
step 1  
Martin Reinecke committed
279 280 281 282 283 284
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_random(random_type, domain, dtype, **kwargs)
    return Field.from_random(random_type, domain, dtype, **kwargs)


def from_global_data(domain, arr, sum_up=False):
Martin Reinecke's avatar
Martin Reinecke committed
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    """Convenience function creating Fields/MultiFields from Numpy arrays or
    dicts of Numpy arrays.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
    arr : Numpy array if `domain` corresponds to a `DomainTuple`,
          dictionary of Numpy arrays if `domain` corresponds to a `MultiDomain`
    sum_up : bool
        Only meaningful if MPI is enabled
        If `True`, the contents of the arrays on all tasks are added together,
        otherwise it is assumed that the array on each task holds the correct
        field values.

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
302 303
    Field or MultiField
        The newly created random field
Martin Reinecke's avatar
Martin Reinecke committed
304
    """
Martin Reinecke's avatar
step 1  
Martin Reinecke committed
305 306 307 308 309 310
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_global_data(domain, arr, sum_up)
    return Field.from_global_data(domain, arr, sum_up)


def from_local_data(domain, arr):
Martin Reinecke's avatar
Martin Reinecke committed
311 312 313 314 315 316 317 318 319 320 321 322
    """Convenience function creating Fields/MultiFields from Numpy arrays or
    dicts of Numpy arrays.

    Parameters
    ----------
    domain : Domainoid
        the intended domain of the output field
    arr : Numpy array if `domain` corresponds to a `DomainTuple`,
          dictionary of Numpy arrays if `domain` corresponds to a `MultiDomain`

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
323 324
    Field or MultiField
        The newly created field
Martin Reinecke's avatar
Martin Reinecke committed
325
    """
Martin Reinecke's avatar
step 1  
Martin Reinecke committed
326 327 328 329 330 331
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_local_data(domain, arr)
    return Field.from_local_data(domain, arr)


def makeDomain(domain):
Martin Reinecke's avatar
Martin Reinecke committed
332 333 334 335
    """Convenience function creating DomainTuples/MultiDomains Domainoids.

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
336
    domain : Domainoid (can be DomainTuple, MultiDomain, dict, Domain or list of Domains)
Martin Reinecke's avatar
Martin Reinecke committed
337 338 339 340
        the description of the requested (multi-)domain

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
341 342
    DomainTuple or MultiDomain
        The newly created domain object
Martin Reinecke's avatar
Martin Reinecke committed
343
    """
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
344
    if isinstance(domain, (MultiDomain, dict)):
Martin Reinecke's avatar
step 1  
Martin Reinecke committed
345 346
        return MultiDomain.make(domain)
    return DomainTuple.make(domain)
347 348


349
def makeOp(input):
Martin Reinecke's avatar
Martin Reinecke committed
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    """Converts a Field or MultiField to a diagonal operator.

    Parameters
    ----------
    input : None, Field or MultiField
        - if None, None is returned.
        - if Field, a DiagonalOperator with the coefficients given by this
            Field is returned.
        - if MultiField, a BlockDiagonalOperator with entries given by this
            MultiField is returned.

    Notes
    -----
    No volume factors are applied.
    """
Martin Reinecke's avatar
Martin Reinecke committed
365 366
    if input is None:
        return None
Martin Reinecke's avatar
Martin Reinecke committed
367 368 369
    if isinstance(input, Field):
        return DiagonalOperator(input)
    if isinstance(input, MultiField):
Martin Reinecke's avatar
Martin Reinecke committed
370
        return BlockDiagonalOperator(
Martin Reinecke's avatar
fix  
Martin Reinecke committed
371
            input.domain, {key: makeOp(val) for key, val in input.items()})
Martin Reinecke's avatar
Martin Reinecke committed
372 373
    raise NotImplementedError

Martin Reinecke's avatar
more  
Martin Reinecke committed
374 375

def domain_union(domains):
Martin Reinecke's avatar
Martin Reinecke committed
376 377 378 379 380 381 382 383
    """Computes the union of multiple DomainTuples/MultiDomains.

    Parameters
    ----------
    domains : list of DomainTuple or MultiDomain
        - if DomainTuple, all entries must be equal
        - if MultiDomain, there must not be any conflicting components
    """
Martin Reinecke's avatar
more  
Martin Reinecke committed
384
    if isinstance(domains[0], DomainTuple):
Martin Reinecke's avatar
Martin Reinecke committed
385
        if any(dom != domains[0] for dom in domains[1:]):
Martin Reinecke's avatar
more  
Martin Reinecke committed
386 387 388 389
            raise ValueError("domain mismatch")
        return domains[0]
    return MultiDomain.union(domains)

Martin Reinecke's avatar
more  
Martin Reinecke committed
390

391 392
# Arithmetic functions working on Fields

393

394 395
_current_module = sys.modules[__name__]

396
for f in ["sqrt", "exp", "log", "log10", "tanh", "sigmoid",
Jakob Knollmueller's avatar
Jakob Knollmueller committed
397
          "conjugate", 'sin', 'cos', 'tan', 'sinh', 'cosh',
398
          'absolute', 'one_over', 'sinc', 'log1p', 'expm1']:
399
    def func(f):
400
        def func2(x):
Martin Reinecke's avatar
Martin Reinecke committed
401
            from .linearization import Linearization
Martin Reinecke's avatar
Martin Reinecke committed
402 403
            from .operators.operator import Operator
            if isinstance(x, (Field, MultiField, Linearization, Operator)):
Martin Reinecke's avatar
Martin Reinecke committed
404
                return getattr(x, f)()
405
            else:
406
                return getattr(np, f)(x)
407 408
        return func2
    setattr(_current_module, f, func(f))
409

Martin Reinecke's avatar
Martin Reinecke committed
410 411 412 413 414

def clip(a, a_min=None, a_max=None):
    return a.clip(a_min, a_max)


415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
def get_default_codomain(domainoid, space=None):
    """For `RGSpace`, returns the harmonic partner domain.
    For `DomainTuple`, returns a copy of the object in which the domain
    indexed by `space` is substituted by its harmonic partner domain.
    In this case, if `space` is None, it is set to 0 if the `DomainTuple`
    contains exactly one domain.

    Parameters
    ----------
    domain: `RGSpace` or `DomainTuple`
        Domain for which to constuct the default harmonic partner
    space: int
        Optional index of the subdomain to be replaced by its default
        codomain. `domain[space]` must be of class `RGSpace`.
    """
    from .domains.rg_space import RGSpace
431 432 433
    from .domains.hp_space import HPSpace
    from .domains.gl_space import GLSpace
    from .domains.lm_space import LMSpace
434 435 436 437 438 439
    if isinstance(domainoid, RGSpace):
        return domainoid.get_default_codomain()
    if not isinstance(domainoid, DomainTuple):
        raise TypeError(
            'Works only on RGSpaces and DomainTuples containing those')
    space = utilities.infer_space(domainoid, space)
440 441
    if not isinstance(domainoid[space], (RGSpace, HPSpace, GLSpace, LMSpace)):
        raise TypeError("can only codomain structrued spaces")
442 443 444
    ret = [dom for dom in domainoid]
    ret[space] = domainoid[space].get_default_codomain()
    return DomainTuple.make(ret)
Lukas Platz's avatar
Lukas Platz committed
445 446 447 448 449 450 451 452 453 454 455


def single_plot(field, **kwargs):
    """Creates a single plot using `Plot`.
    Keyword arguments are passed to both `Plot.add` and `Plot.output`.
    """
    p = Plot()
    p.add(field, **kwargs)
    if 'title' in kwargs:
        del(kwargs['title'])
    p.output(**kwargs)
456 457 458 459


def exec_time(obj, want_metric=True):
    """Times the execution time of an operator or an energy."""
Philipp Arras's avatar
Philipp Arras committed
460 461 462
    from .linearization import Linearization
    from .minimization.energy import Energy
    from .operators.energy_operators import EnergyOperator
463 464 465
    if isinstance(obj, Energy):
        t0 = time()
        obj.at(0.99*obj.position)
466
        logger.info('Energy.at(): {}'.format(time() - t0))
467 468 469

        t0 = time()
        obj.value
470
        logger.info('Energy.value: {}'.format(time() - t0))
471 472
        t0 = time()
        obj.gradient
473
        logger.info('Energy.gradient: {}'.format(time() - t0))
474 475
        t0 = time()
        obj.metric
476
        logger.info('Energy.metric: {}'.format(time() - t0))
477 478 479

        t0 = time()
        obj.apply_metric(obj.position)
480
        logger.info('Energy.apply_metric: {}'.format(time() - t0))
481 482 483

        t0 = time()
        obj.metric(obj.position)
484
        logger.info('Energy.metric(position): {}'.format(time() - t0))
485 486 487 488 489
    elif isinstance(obj, Operator):
        want_metric = bool(want_metric)
        pos = from_random('normal', obj.domain)
        t0 = time()
        obj(pos)
490
        logger.info('Operator call with field: {}'.format(time() - t0))
491 492 493 494

        lin = Linearization.make_var(pos, want_metric=want_metric)
        t0 = time()
        res = obj(lin)
495
        logger.info('Operator call with linearization: {}'.format(time() - t0))
496 497 498 499

        if isinstance(obj, EnergyOperator):
            t0 = time()
            res.gradient
500
            logger.info('Gradient evaluation: {}'.format(time() - t0))
501 502 503 504

            if want_metric:
                t0 = time()
                res.metric(pos)
505
                logger.info('Metric apply: {}'.format(time() - t0))
506 507
    else:
        raise TypeError
Philipp Arras's avatar
Philipp Arras committed
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533


def calculate_position(operator, output):
    """Finds approximate preimage of an operator for a given output."""
    from .minimization.descent_minimizers import NewtonCG
    from .minimization.iteration_controllers import GradientNormController
    from .minimization.metric_gaussian_kl import MetricGaussianKL
    from .operators.scaling_operator import ScalingOperator
    from .operators.energy_operators import GaussianEnergy, StandardHamiltonian
    if not isinstance(operator, Operator):
        raise TypeError
    if output.domain != operator.target:
        raise TypeError
    cov = 1e-3*output.to_global_data().max()**2
    invcov = ScalingOperator(cov, output.domain).inverse
    d = output + invcov.draw_sample(from_inverse=True)
    lh = GaussianEnergy(d, invcov)(operator)
    H = StandardHamiltonian(
        lh, ic_samp=GradientNormController(iteration_limit=200))
    pos = 0.1*from_random('normal', operator.domain)
    minimizer = NewtonCG(GradientNormController(iteration_limit=10))
    for ii in range(3):
        kl = MetricGaussianKL(pos, H, 3, mirror_samples=True)
        kl, _ = minimizer(kl)
        pos = kl.position
    return pos