distributed_do.py 16.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
20
21
22
import numpy as np
from .random import Random
from mpi4py import MPI

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
23
24
25
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
26
master = (rank == 0)
27
28


Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
def is_numpy():
    return False


Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
33
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
34
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
35

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
36
37

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
38
39
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
40
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
41
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
42
43
    return lo, hi

44

45
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
46
    if len(shape) == 0 or distaxis == -1:
47
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
48
49
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
50
51
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
52

53
54
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
55
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
56
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
57
            distaxis = -1
58
59
60
        self._distaxis = distaxis
        self._data = data

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
61
    def _sanity_checks(self):
62
        # check whether the distaxis is consistent
Martin Reinecke's avatar
Martin Reinecke committed
63
        if self._distaxis < -1 or self._distaxis >= len(self._shape):
64
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
65
66
67
68
        itmp = np.array(self._distaxis)
        otmp = np.empty(ntask, dtype=np.int)
        _comm.Allgather(itmp, otmp)
        if np.any(otmp != self._distaxis):
69
70
            raise ValueError
        # check whether the global shape is consistent
Martin Reinecke's avatar
Martin Reinecke committed
71
72
73
        itmp = np.array(self._shape)
        otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
        _comm.Allgather(itmp, otmp)
74
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
75
            if np.any(otmp[i, :] != self._shape):
76
77
                raise ValueError
        # check shape of local data
Martin Reinecke's avatar
Martin Reinecke committed
78
79
        if self._distaxis < 0:
            if self._data.shape != self._shape:
80
81
                raise ValueError
        else:
Martin Reinecke's avatar
Martin Reinecke committed
82
83
84
85
            itmp = np.array(self._shape)
            itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
                                              ntask, rank)
            if np.any(self._data.shape != itmp):
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
                raise ValueError

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
102
        return data_object(self._shape, self._data.real, self._distaxis)
103
104
105

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
106
        return data_object(self._shape, self._data.imag, self._distaxis)
107

Martin Reinecke's avatar
Martin Reinecke committed
108
109
110
111
112
113
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
114
    def _contraction_helper(self, op, mpiop, axis):
115
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
116
            if len(axis) == len(self._data.shape):
117
118
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
119
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
120
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
121
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
122
123
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
124
            return res2[()]
125
126

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
127
128
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
129
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
130
            return from_global_data(res2, distaxis=0)
131
        else:
Martin Reinecke's avatar
Martin Reinecke committed
132
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
133
134
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
135
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
136
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
137
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
138
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
139
140
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
141
142
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
143
144
145

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
146

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
147
148
    def min(self, axis=None):
        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
149

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
150
151
    def max(self, axis=None):
        return self._contraction_helper("max", MPI.MAX, axis)
152

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
153
154
    def mean(self):
        return self.sum()/self.size
Martin Reinecke's avatar
Martin Reinecke committed
155

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
156
157
    def std(self):
        return np.sqrt(self.var())
Martin Reinecke's avatar
Martin Reinecke committed
158

Martin Reinecke's avatar
Martin Reinecke committed
159
    # FIXME: to be improved!
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
160
161
162
    def var(self):
        return (abs(self-self.mean())**2).mean()

163
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
164
        a = self
165
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
166
            b = other
167
168
169
170
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
171
172
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
173
174
175
176
        elif np.isscalar(other):
            a = a._data
            b = other
        elif isinstance(other, np.ndarray):
Martin Reinecke's avatar
Martin Reinecke committed
177
            a = a._data
178
            b = other
Martin Reinecke's avatar
Martin Reinecke committed
179
180
        else:
            return NotImplemented
181
182

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
183
184
185
186
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

    def __add__(self, other):
        return self._binary_helper(other, op='__add__')

    def __radd__(self, other):
        return self._binary_helper(other, op='__radd__')

    def __iadd__(self, other):
        return self._binary_helper(other, op='__iadd__')

    def __sub__(self, other):
        return self._binary_helper(other, op='__sub__')

    def __rsub__(self, other):
        return self._binary_helper(other, op='__rsub__')

    def __isub__(self, other):
        return self._binary_helper(other, op='__isub__')

    def __mul__(self, other):
        return self._binary_helper(other, op='__mul__')

    def __rmul__(self, other):
        return self._binary_helper(other, op='__rmul__')

    def __imul__(self, other):
        return self._binary_helper(other, op='__imul__')

    def __div__(self, other):
        return self._binary_helper(other, op='__div__')

    def __rdiv__(self, other):
        return self._binary_helper(other, op='__rdiv__')

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
221
222
223
    def __idiv__(self, other):
        return self._binary_helper(other, op='__idiv__')

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def __truediv__(self, other):
        return self._binary_helper(other, op='__truediv__')

    def __rtruediv__(self, other):
        return self._binary_helper(other, op='__rtruediv__')

    def __pow__(self, other):
        return self._binary_helper(other, op='__pow__')

    def __rpow__(self, other):
        return self._binary_helper(other, op='__rpow__')

    def __ipow__(self, other):
        return self._binary_helper(other, op='__ipow__')

    def __eq__(self, other):
        return self._binary_helper(other, op='__eq__')

    def __ne__(self, other):
        return self._binary_helper(other, op='__ne__')

    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
246
        return data_object(self._shape, -self._data, self._distaxis)
247
248

    def __abs__(self):
Martin Reinecke's avatar
Martin Reinecke committed
249
        return data_object(self._shape, np.abs(self._data), self._distaxis)
250
251

    def all(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
252
        return self.sum() == self.size
253
254

    def any(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
255
        return self.sum() != 0
256

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
257
258
    def fill(self, value):
        self._data.fill(value)
259

Martin Reinecke's avatar
Martin Reinecke committed
260

Martin Reinecke's avatar
Martin Reinecke committed
261
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
262
263
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
264
265


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
266
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
267
268
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
269
270


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
271
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
272
273
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
274
275


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
276
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
277
278
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
279
280
281
282
283
284
285


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
286
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
287
288
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
289
    return res[()]
290
291
292
293
294
295
296


def _math_helper(x, function, out):
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
297
        return data_object(x.shape, function(x._data), x._distaxis)
298
299
300
301
302
303
304
305
306
307
308
309
310
311


def abs(a, out=None):
    return _math_helper(a, np.abs, out)


def exp(a, out=None):
    return _math_helper(a, np.exp, out)


def log(a, out=None):
    return _math_helper(a, np.log, out)


Martin Reinecke's avatar
Martin Reinecke committed
312
313
314
315
def tanh(a, out=None):
    return _math_helper(a, np.tanh, out)


316
317
318
319
def sqrt(a, out=None):
    return _math_helper(a, np.sqrt, out)


Martin Reinecke's avatar
Martin Reinecke committed
320
321
322
323
324
325
326
327
328
329
330
331
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    data = np.array(object._data, dtype=dtype, copy=copy)
    if set_locked:
Martin Reinecke's avatar
fix    
Martin Reinecke committed
332
        data.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
333
    return data_object(object._shape, data, distaxis=object._distaxis)
334
335


Martin Reinecke's avatar
Martin Reinecke committed
336
337
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
338
339
340
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
341
def from_random(random_type, shape, dtype=np.float64, **kwargs):
342
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
343
344
345
346
347
348
349
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
350

Martin Reinecke's avatar
Martin Reinecke committed
351

Martin Reinecke's avatar
Martin Reinecke committed
352
353
354
355
def local_data(arr):
    return arr._data


356
357
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
358
    if distaxis < 0:
359
360
361
362
363
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
364
365
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
366
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
367
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
368
369


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
370
371
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
372
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
373
    return res
Martin Reinecke's avatar
Martin Reinecke committed
374
375
376
377
378
379


def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
380
def from_local_data(shape, arr, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
381
382
383
    return data_object(shape, arr, distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
384
385
def from_global_data(arr, distaxis=0):
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
386
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
387
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
388
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
389
    sl[distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
390
391
392
    return data_object(arr.shape, arr[sl], distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
393
394
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
395
396
397
398
399
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
400
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
401
402
403
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
404
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
405
406
407
408
409
410
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
411
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
412
413
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
414
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
415
                break
Martin Reinecke's avatar
Martin Reinecke committed
416

Martin Reinecke's avatar
Martin Reinecke committed
417
    if arr._distaxis == -1:  # all data available, just pick the proper subset
Martin Reinecke's avatar
Martin Reinecke committed
418
        return from_global_data(arr._data, dist)
Martin Reinecke's avatar
Martin Reinecke committed
419
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
420
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
421
422
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
423
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
424
425
426
427
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
428
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
429
430
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
431
432
433
434
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
435
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
436
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
437

Martin Reinecke's avatar
Martin Reinecke committed
438
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
439
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
440
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
441
442
443
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
444
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
445
446
447
448
449
450
451
452
453
454
455
456
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
457
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
458
459
460
461
462
463
            ssz[i] = ssz0*(hi-lo)
            sbuf[ofs:ofs+ssz[i]] = arr._data[sslice].flat
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
464
465
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
466
467
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
468
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
469
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
470
471
472
473
474
475
476
477
478
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
        arrnew = empty(arr.shape, dtype=arr.dtype, distaxis=dist)
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
479
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
480
481
482
483
            sz = rsz[i]//arr._data.itemsize
            arrnew._data[rslice].flat = rbuf[ofs:ofs+sz]
            ofs += sz
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
484
485


Martin Reinecke's avatar
Martin Reinecke committed
486
487
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
488
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
489
490
491
492
493
494
495
496
497
498
499
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
500
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
501
502
503
504
505
506
507
508
509
510
511
512
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
    arrnew = empty((arr.shape[1], arr.shape[0]), dtype=arr.dtype, distaxis=0)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
513
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
514
515
516
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
517
        arrnew._data[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
518
519
520
521
        ofs += sz
    return arrnew


Martin Reinecke's avatar
Martin Reinecke committed
522
523
def default_distaxis():
    return 0
524
525
526
527
528
529
530
531


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable