power_space.py 9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13 14 15 16 17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Theo Steininger's avatar
Theo Steininger committed
18

19 20
import numpy as np

Martin Reinecke's avatar
Martin Reinecke committed
21
from ...spaces.space import Space
Martin Reinecke's avatar
Martin Reinecke committed
22
from functools import reduce
Theo Steininger's avatar
Theo Steininger committed
23 24


Theo Steininger's avatar
Theo Steininger committed
25
class PowerSpace(Space):
Theo Steininger's avatar
Theo Steininger committed
26 27 28 29 30 31
    """ NIFTY class for spaces of power spectra.

    Parameters
    ----------
    harmonic_partner : Space
        The harmonic Space of which this is the power space.
Martin Reinecke's avatar
Martin Reinecke committed
32 33 34 35 36 37 38 39 40 41 42 43
    binbounds: None, or tuple/array/list of float
        if None:
            There will be as many bins as there are distinct k-vector lengths
            in the harmonic partner space.
            The "binbounds" property of the PowerSpace will also be None.

        else:
            the bin bounds requested for this PowerSpace. The array
            must be sorted and strictly ascending. The first entry is the right
            boundary of the first bin, and the last entry is the left boundary
            of the last bin, i.e. thee will be len(binbounds)+1 bins in total,
            with the first and last bins reaching to -+infinity, respectively.
Theo Steininger's avatar
Theo Steininger committed
44 45 46 47
        (default : None)

    Attributes
    ----------
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
48
    pindex : numpy.ndarray
49 50
        This holds the information which pixel of the harmonic partner gets
        mapped to which power bin
Theo Steininger's avatar
Theo Steininger committed
51
    kindex : numpy.ndarray
52
        Sorted array of all k-modes.
Theo Steininger's avatar
Theo Steininger committed
53 54 55
    rho : numpy.ndarray
        The amount of k-modes that get mapped to one power bin is given by
        rho.
56 57 58
    dim : np.int
        Total number of dimensionality, i.e. the number of pixels.
    harmonic : bool
Martin Reinecke's avatar
Martin Reinecke committed
59
        Always True for this space.
60 61 62 63
    total_volume : np.float
        The total volume of the space.
    shape : tuple of np.ints
        The shape of the space's data array.
Martin Reinecke's avatar
Martin Reinecke committed
64 65 66
    binbounds : tuple or None
        Boundaries between the power spectrum bins; None is used to indicate
        natural binning
Theo Steininger's avatar
Theo Steininger committed
67 68 69 70 71 72 73

    Notes
    -----
    A power space is the result of a projection of a harmonic space where
    k-modes of equal length get mapped to one power index.

    """
74

75 76
    _powerIndexCache = {}

77 78
    # ---Overwritten properties and methods---

Martin Reinecke's avatar
Martin Reinecke committed
79
    @staticmethod
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
80
    def linear_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
81 82 83 84 85 86 87 88 89 90 91 92
        """
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in linear scale) between these two.
        """
        nbin = int(nbin)
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
93 94
        assert nbin >= 3, "nbin must be at least 3"
        return np.linspace(float(first_bound), float(last_bound), nbin-1)
Martin Reinecke's avatar
Martin Reinecke committed
95 96

    @staticmethod
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
97
    def logarithmic_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
98 99 100 101 102 103 104 105 106 107 108 109
        """
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in natural logarithmic scale)
        between these two.
        """
Martin Reinecke's avatar
Martin Reinecke committed
110
        nbin = int(nbin)
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
111
        assert nbin >= 3, "nbin must be at least 3"
Martin Reinecke's avatar
Martin Reinecke committed
112 113 114
        return np.logspace(np.log(float(first_bound)),
                           np.log(float(last_bound)),
                           nbin-1, base=np.e)
Martin Reinecke's avatar
Martin Reinecke committed
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    @staticmethod
    def useful_binbounds(space, logarithmic, nbin=None):
        if not (isinstance(space, Space) and space.harmonic):
            raise ValueError("first argument must be a harmonic space.")
        if logarithmic is None and nbin is None:
            return None
        nbin = None if nbin is None else int(nbin)
        logarithmic = bool(logarithmic)
        dists = space.get_unique_distances()
        if len(dists) < 3:
            raise ValueError("Space does not have enough unique k lengths")
        lbound = 0.5*(dists[0]+dists[1])
        rbound = 0.5*(dists[-2]+dists[-1])
        dists[0] = lbound
        dists[-1] = rbound
        if logarithmic:
            dists = np.log(dists)
        binsz_min = np.max(np.diff(dists))
        nbin_max = int((dists[-1]-dists[0])/binsz_min)+2
        if nbin is None:
            nbin = nbin_max
        assert nbin >= 3, "nbin must be at least 3"
        if nbin > nbin_max:
            raise ValueError("nbin is too large")
        if logarithmic:
            return PowerSpace.logarithmic_binbounds(nbin, lbound, rbound)
        else:
            return PowerSpace.linear_binbounds(nbin, lbound, rbound)

Martin Reinecke's avatar
Martin Reinecke committed
145
    def __init__(self, harmonic_partner, binbounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
146
        super(PowerSpace, self).__init__()
Martin Reinecke's avatar
Martin Reinecke committed
147
        self._ignore_for_hash += ['_pindex', '_kindex', '_rho']
148

Martin Reinecke's avatar
Martin Reinecke committed
149 150 151
        if not (isinstance(harmonic_partner, Space) and
                harmonic_partner.harmonic):
            raise ValueError("harmonic_partner must be a harmonic space.")
152
        self._harmonic_partner = harmonic_partner
153

Martin Reinecke's avatar
Martin Reinecke committed
154 155
        if binbounds is not None:
            binbounds = tuple(binbounds)
156

Martin Reinecke's avatar
Martin Reinecke committed
157
        key = (harmonic_partner, binbounds)
158 159
        if self._powerIndexCache.get(key) is None:
            distance_array = \
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
160
                self.harmonic_partner.get_distance_array()
161
            temp_pindex = self._compute_pindex(
162
                                harmonic_partner=self.harmonic_partner,
163
                                distance_array=distance_array,
Martin Reinecke's avatar
Martin Reinecke committed
164
                                binbounds=binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
165
            temp_rho = np.bincount(temp_pindex.ravel())
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
166
            assert not np.any(temp_rho == 0), "empty bins detected"
Martin Reinecke's avatar
Martin Reinecke committed
167 168
            temp_kindex = np.bincount(temp_pindex.ravel(),
                                      weights=distance_array.ravel()) \
Martin Reinecke's avatar
Martin Reinecke committed
169
                                      / temp_rho
Martin Reinecke's avatar
Martin Reinecke committed
170
            self._powerIndexCache[key] = (binbounds,
171 172 173 174 175 176 177
                                          temp_pindex,
                                          temp_kindex,
                                          temp_rho)

        (self._binbounds, self._pindex, self._kindex, self._rho) = \
            self._powerIndexCache[key]

178
    @staticmethod
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
179
    def _compute_pindex(harmonic_partner, distance_array, binbounds):
180
        if binbounds is None:
181
            binbounds = harmonic_partner.get_natural_binbounds()
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
182
        return np.searchsorted(binbounds, distance_array)
183

184 185
    # ---Mandatory properties and methods---

186
    def __repr__(self):
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
187 188
        return ("PowerSpace(harmonic_partner=%r, binbounds=%r)"
                % (self.harmonic_partner, self._binbounds))
189

190 191 192
    @property
    def harmonic(self):
        return True
193

194 195
    @property
    def shape(self):
196
        return self.kindex.shape
197

198 199 200 201 202 203 204
    @property
    def dim(self):
        return self.shape[0]

    @property
    def total_volume(self):
        # every power-pixel has a volume of 1
Jait Dixit's avatar
Jait Dixit committed
205
        return float(reduce(lambda x, y: x*y, self.pindex.shape))
206 207

    def copy(self):
208
        return self.__class__(harmonic_partner=self.harmonic_partner,
Martin Reinecke's avatar
Martin Reinecke committed
209
                              binbounds=self._binbounds)
210

211 212 213
    def scalar_weight(self):
        return None

214
    def weight(self):
215
       # MR FIXME: this will probably change to 1 soon
216
        return np.asarray(self.rho, dtype=np.float64)
217

Martin Reinecke's avatar
stage1  
Martin Reinecke committed
218 219
    def get_distance_array(self):
        return self.kindex.copy()
220

221
    def get_fft_smoothing_kernel_function(self, sigma):
222
        raise NotImplementedError(
223
            "There is no fft smoothing function for PowerSpace.")
224

225 226 227
    # ---Added properties and methods---

    @property
228
    def harmonic_partner(self):
Theo Steininger's avatar
Theo Steininger committed
229
        """ Returns the Space of which this is the power space.
230 231
        """
        return self._harmonic_partner
232 233

    @property
Martin Reinecke's avatar
Martin Reinecke committed
234 235
    def binbounds(self):
        return self._binbounds
236 237 238

    @property
    def pindex(self):
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
239
        """ A numpy.ndarray having the shape of the harmonic partner
Theo Steininger's avatar
Theo Steininger committed
240 241
        space containing the indices of the power bin a pixel belongs to.
        """
242 243 244 245
        return self._pindex

    @property
    def kindex(self):
Theo Steininger's avatar
Theo Steininger committed
246 247
        """ Sorted array of all k-modes.
        """
248 249 250 251
        return self._kindex

    @property
    def rho(self):
Theo Steininger's avatar
Theo Steininger committed
252 253
        """Degeneracy factor of the individual k-vectors.
        """
254
        return self._rho