utilities.py 9.06 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Ultima's avatar
Ultima committed
18

Martin Reinecke's avatar
Martin Reinecke committed
19
from builtins import next, range
Ultima's avatar
Ultima committed
20
import numpy as np
21
from itertools import product
Martin Reinecke's avatar
Martin Reinecke committed
22
import abc
Martin Reinecke's avatar
Martin Reinecke committed
23
from future.utils import with_metaclass
24

Martin Reinecke's avatar
Martin Reinecke committed
25
__all__ = ["get_slice_list", "safe_cast", "parse_spaces", "infer_space",
Martin Reinecke's avatar
Martin Reinecke committed
26
27
           "memo", "NiftyMetaBase", "fft_prep", "hartley", "my_fftn_r2c",
           "my_fftn"]
Martin Reinecke's avatar
Martin Reinecke committed
28

29

30
31
def get_slice_list(shape, axes):
    """
theos's avatar
theos committed
32
33
    Helper function which generates slice list(s) to traverse over all
    combinations of axes, other than the selected axes.
Jait Dixit's avatar
Jait Dixit committed
34
35
36
37

    Parameters
    ----------
    shape: tuple
theos's avatar
theos committed
38
        Shape of the data array to traverse over.
Jait Dixit's avatar
Jait Dixit committed
39
    axes: tuple
theos's avatar
theos committed
40
        Axes which should not be iterated over.
Jait Dixit's avatar
Jait Dixit committed
41

Martin Reinecke's avatar
Martin Reinecke committed
42
43
    Yields
    ------
Jait Dixit's avatar
Jait Dixit committed
44
45
46
47
48
49
50
51
    list
        The next list of indices and/or slice objects for each dimension.

    Raises
    ------
    ValueError
        If shape is empty.
        If axes(axis) does not match shape.
52
    """
Martin Reinecke's avatar
Martin Reinecke committed
53
    if shape is None:
54
        raise ValueError("shape cannot be None.")
55

56
57
    if axes:
        if not all(axis < len(shape) for axis in axes):
58
            raise ValueError("axes(axis) does not match shape.")
59
        axes_select = [0 if x in axes else 1 for x, y in enumerate(shape)]
Jait Dixit's avatar
Jait Dixit committed
60
        axes_iterables = \
Martin Reinecke's avatar
Martin Reinecke committed
61
            [list(range(y)) for x, y in enumerate(shape) if x not in axes]
62
63
64
65
66
        for index in product(*axes_iterables):
            it_iter = iter(index)
            slice_list = [
                next(it_iter)
                if axis else slice(None, None) for axis in axes_select
Jait Dixit's avatar
Jait Dixit committed
67
                ]
68
69
70
            yield slice_list
    else:
        yield [slice(None, None)]
Ultima's avatar
Ultima committed
71

Ultima's avatar
Ultima committed
72

73
74
75
76
77
78
79
def safe_cast(tfunc, val):
    tmp = tfunc(val)
    if val != tmp:
        raise ValueError("value changed during cast")
    return tmp


Martin Reinecke's avatar
Martin Reinecke committed
80
81
def parse_spaces(spaces, nspc):
    nspc = safe_cast(int, nspc)
82
    if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
83
        return tuple(range(nspc))
84
85
86
87
    elif np.isscalar(spaces):
        spaces = (safe_cast(int, spaces),)
    else:
        spaces = tuple(safe_cast(int, item) for item in spaces)
88
89
    if len(spaces) == 0:
        return spaces
90
    tmp = tuple(set(spaces))
Martin Reinecke's avatar
Martin Reinecke committed
91
    if tmp[0] < 0 or tmp[-1] >= nspc:
92
93
94
95
        raise ValueError("space index out of range")
    if len(tmp) != len(spaces):
        raise ValueError("multiply defined space indices")
    return spaces
Martin Reinecke's avatar
Martin Reinecke committed
96
97


98
99
100
101
102
103
104
105
106
107
108
def infer_space(domain, space):
    if space is None:
        if len(domain) != 1:
            raise ValueError("need a Field with exactly one domain")
        space = 0
    space = int(space)
    if space < 0 or space >= len(domain):
        raise ValueError("space index out of range")
    return space


Martin Reinecke's avatar
Martin Reinecke committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def memo(f):
    name = f.__name__

    def wrapped_f(self):
        if not hasattr(self, "_cache"):
            self._cache = {}
        try:
            return self._cache[name]
        except KeyError:
            self._cache[name] = f(self)
            return self._cache[name]
    return wrapped_f


class _DocStringInheritor(type):
    """
    A variation on
    http://groups.google.com/group/comp.lang.python/msg/26f7b4fcb4d66c95
    by Paul McGuire
    """
    def __new__(meta, name, bases, clsdict):
        if not('__doc__' in clsdict and clsdict['__doc__']):
            for mro_cls in (mro_cls for base in bases
                            for mro_cls in base.mro()):
                doc = mro_cls.__doc__
                if doc:
                    clsdict['__doc__'] = doc
                    break
        for attr, attribute in list(clsdict.items()):
            if not attribute.__doc__:
                for mro_cls in (mro_cls for base in bases
                                for mro_cls in base.mro()
                                if hasattr(mro_cls, attr)):
                    doc = getattr(getattr(mro_cls, attr), '__doc__')
                    if doc:
                        if isinstance(attribute, property):
                            clsdict[attr] = property(attribute.fget,
                                                     attribute.fset,
                                                     attribute.fdel,
                                                     doc)
                        else:
                            attribute.__doc__ = doc
                        break
        return super(_DocStringInheritor, meta).__new__(meta, name,
                                                        bases, clsdict)


class NiftyMeta(_DocStringInheritor, abc.ABCMeta):
    pass
Martin Reinecke's avatar
Martin Reinecke committed
158
159


Martin Reinecke's avatar
Martin Reinecke committed
160
161
162
163
def NiftyMetaBase():
    return with_metaclass(NiftyMeta, type('NewBase', (object,), {}))


Martin Reinecke's avatar
Martin Reinecke committed
164
165
166
167
168
def nthreads():
    if nthreads._val is None:
        import os
        nthreads._val = int(os.getenv("OMP_NUM_THREADS", "1"))
    return nthreads._val
169
170


Martin Reinecke's avatar
Martin Reinecke committed
171
nthreads._val = None
Martin Reinecke's avatar
Martin Reinecke committed
172

Martin Reinecke's avatar
Martin Reinecke committed
173
174
175
176
177
178
179
180
181
182
183
# Optional extra arguments for the FFT calls
# _fft_extra_args = {}
# if exact reproducibility is needed, use this:
_fft_extra_args = dict(planner_effort='FFTW_ESTIMATE')


def fft_prep():
    import pyfftw
    pyfftw.interfaces.cache.enable()
    pyfftw.interfaces.cache.set_keepalive_time(1000.)

Martin Reinecke's avatar
Martin Reinecke committed
184

Martin Reinecke's avatar
Martin Reinecke committed
185
186
187
188
189
def hartley(a, axes=None):
    # Check if the axes provided are valid given the shape
    if axes is not None and \
            not all(axis < len(a.shape) for axis in axes):
        raise ValueError("Provided axes do not match array shape")
190
    if np.issubdtype(a.dtype, np.complexfloating):
Martin Reinecke's avatar
Martin Reinecke committed
191
        raise TypeError("Hartley transform requires real-valued arrays.")
Martin Reinecke's avatar
Martin Reinecke committed
192
193

    from pyfftw.interfaces.numpy_fft import rfftn
Martin Reinecke's avatar
Martin Reinecke committed
194
    tmp = rfftn(a, axes=axes, threads=nthreads(), **_fft_extra_args)
Martin Reinecke's avatar
Martin Reinecke committed
195

Martin Reinecke's avatar
Martin Reinecke committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    def _fill_array(tmp, res, axes):
        if axes is None:
            axes = tuple(range(tmp.ndim))
        lastaxis = axes[-1]
        ntmplast = tmp.shape[lastaxis]
        slice1 = [slice(None)]*lastaxis + [slice(0, ntmplast)]
        np.add(tmp.real, tmp.imag, out=res[slice1])

        def _fill_upper_half(tmp, res, axes):
            lastaxis = axes[-1]
            nlast = res.shape[lastaxis]
            ntmplast = tmp.shape[lastaxis]
            nrem = nlast - ntmplast
            slice1 = [slice(None)]*lastaxis + [slice(ntmplast, None)]
            slice2 = [slice(None)]*lastaxis + [slice(nrem, 0, -1)]
            for i in axes[:-1]:
                slice1[i] = slice(1, None)
                slice2[i] = slice(None, 0, -1)
            np.subtract(tmp[slice2].real, tmp[slice2].imag, out=res[slice1])
            for i, ax in enumerate(axes[:-1]):
                dim1 = [slice(None)]*ax + [slice(0, 1)]
                axes2 = axes[:i] + axes[i+1:]
                _fill_upper_half(tmp[dim1], res[dim1], axes2)

        _fill_upper_half(tmp, res, axes)
        return res
Martin Reinecke's avatar
Martin Reinecke committed
222

Martin Reinecke's avatar
Martin Reinecke committed
223
    return _fill_array(tmp, np.empty_like(a), axes)
Martin Reinecke's avatar
Martin Reinecke committed
224
225
226
227
228
229
230
231


# Do a real-to-complex forward FFT and return the _full_ output array
def my_fftn_r2c(a, axes=None):
    # Check if the axes provided are valid given the shape
    if axes is not None and \
            not all(axis < len(a.shape) for axis in axes):
        raise ValueError("Provided axes do not match array shape")
232
    if np.issubdtype(a.dtype, np.complexfloating):
Martin Reinecke's avatar
Martin Reinecke committed
233
234
235
        raise TypeError("Transform requires real-valued input arrays.")

    from pyfftw.interfaces.numpy_fft import rfftn
Martin Reinecke's avatar
Martin Reinecke committed
236
    tmp = rfftn(a, axes=axes, threads=nthreads(), **_fft_extra_args)
Martin Reinecke's avatar
Martin Reinecke committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

    def _fill_complex_array(tmp, res, axes):
        if axes is None:
            axes = tuple(range(tmp.ndim))
        lastaxis = axes[-1]
        ntmplast = tmp.shape[lastaxis]
        slice1 = [slice(None)]*lastaxis + [slice(0, ntmplast)]
        res[slice1] = tmp

        def _fill_upper_half_complex(tmp, res, axes):
            lastaxis = axes[-1]
            nlast = res.shape[lastaxis]
            ntmplast = tmp.shape[lastaxis]
            nrem = nlast - ntmplast
            slice1 = [slice(None)]*lastaxis + [slice(ntmplast, None)]
            slice2 = [slice(None)]*lastaxis + [slice(nrem, 0, -1)]
            for i in axes[:-1]:
                slice1[i] = slice(1, None)
                slice2[i] = slice(None, 0, -1)
            # np.conjugate(tmp[slice2], out=res[slice1])
            res[slice1] = np.conjugate(tmp[slice2])
            for i, ax in enumerate(axes[:-1]):
                dim1 = [slice(None)]*ax + [slice(0, 1)]
                axes2 = axes[:i] + axes[i+1:]
                _fill_upper_half_complex(tmp[dim1], res[dim1], axes2)

        _fill_upper_half_complex(tmp, res, axes)
        return res

    return _fill_complex_array(tmp, np.empty_like(a, dtype=tmp.dtype), axes)
Martin Reinecke's avatar
Martin Reinecke committed
267
268
269
270
271


def my_fftn(a, axes=None):
    from pyfftw.interfaces.numpy_fft import fftn
    return fftn(a, axes=axes, **_fft_extra_args)