distributed_do.py 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20 21 22

import sys

23 24
import numpy as np
from mpi4py import MPI
Philipp Arras's avatar
Philipp Arras committed
25 26 27

from ..compat import *
from .random import Random
28

Martin Reinecke's avatar
Martin Reinecke committed
29 30 31 32 33 34 35 36 37
__all__ = ["ntask", "rank", "master", "local_shape", "data_object", "full",
           "empty", "zeros", "ones", "empty_like", "vdot", "exp",
           "log", "tanh", "sqrt", "from_object", "from_random",
           "local_data", "ibegin", "ibegin_from_shape", "np_allreduce_sum",
           "np_allreduce_min", "np_allreduce_max",
           "distaxis", "from_local_data", "from_global_data", "to_global_data",
           "redistribute", "default_distaxis", "is_numpy",
           "lock", "locked", "uniform_full", "transpose"]

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
38 39 40
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
41
master = (rank == 0)
42 43


Martin Reinecke's avatar
Martin Reinecke committed
44 45 46 47
def is_numpy():
    return False


Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
48
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
49
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
50

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
51 52

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
53 54
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
55
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
56
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
57 58
    return lo, hi

59

60
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
61
    if len(shape) == 0 or distaxis == -1:
62
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
63 64
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
65 66
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
67

68 69
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
70
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
71
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
72
            distaxis = -1
Martin Reinecke's avatar
Martin Reinecke committed
73 74
            if not isinstance(data, np.ndarray):
                data = np.full((), data)
75 76
        self._distaxis = distaxis
        self._data = data
Martin Reinecke's avatar
Martin Reinecke committed
77 78
        if local_shape(self._shape, self._distaxis) != self._data.shape:
            raise ValueError("shape mismatch")
79

80 81 82
    def copy(self):
        return data_object(self._shape, self._data.copy(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#     def _sanity_checks(self):
#         # check whether the distaxis is consistent
#         if self._distaxis < -1 or self._distaxis >= len(self._shape):
#             raise ValueError
#         itmp = np.array(self._distaxis)
#         otmp = np.empty(ntask, dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         if np.any(otmp != self._distaxis):
#             raise ValueError
#         # check whether the global shape is consistent
#         itmp = np.array(self._shape)
#         otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         for i in range(ntask):
#             if np.any(otmp[i, :] != self._shape):
#                 raise ValueError
#         # check shape of local data
#         if self._distaxis < 0:
#             if self._data.shape != self._shape:
#                 raise ValueError
#         else:
#             itmp = np.array(self._shape)
#             itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
#                                               ntask, rank)
#             if np.any(self._data.shape != itmp):
#                 raise ValueError
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
124
        return data_object(self._shape, self._data.real, self._distaxis)
125 126 127

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
128
        return data_object(self._shape, self._data.imag, self._distaxis)
129

Martin Reinecke's avatar
Martin Reinecke committed
130 131 132 133 134 135
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
136
    def _contraction_helper(self, op, mpiop, axis):
137
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
138
            if len(axis) == len(self._data.shape):
139 140
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
141
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
142
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
143
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
144 145
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
146
            return res2[()]
147 148

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
149 150
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
151
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
152
            return from_global_data(res2, distaxis=0)
153
        else:
Martin Reinecke's avatar
Martin Reinecke committed
154
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
155 156
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
157
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
158
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
159
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
160
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
161 162
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
163 164
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
165 166 167

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
168

169 170 171
    def prod(self, axis=None):
        return self._contraction_helper("prod", MPI.PROD, axis)

172 173
#    def min(self, axis=None):
#        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
174

175 176
#    def max(self, axis=None):
#        return self._contraction_helper("max", MPI.MAX, axis)
177

178 179 180 181 182 183
    def mean(self, axis=None):
        if axis is None:
            sz = self.size
        else:
            sz = reduce(lambda x, y: x*y, [self.shape[i] for i in axis])
        return self.sum(axis)/sz
Martin Reinecke's avatar
Martin Reinecke committed
184

185 186
    def std(self, axis=None):
        return np.sqrt(self.var(axis))
Martin Reinecke's avatar
Martin Reinecke committed
187

Martin Reinecke's avatar
Martin Reinecke committed
188
    # FIXME: to be improved!
189 190 191
    def var(self, axis=None):
        if axis is not None and len(axis) != len(self.shape):
            raise ValueError("functionality not yet supported")
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
192 193
        return (abs(self-self.mean())**2).mean()

194
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
195
        a = self
196
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
197
            b = other
198 199 200 201
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
202 203
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
204 205 206 207
        elif np.isscalar(other):
            a = a._data
            b = other
        elif isinstance(other, np.ndarray):
Martin Reinecke's avatar
Martin Reinecke committed
208
            a = a._data
209
            b = other
Martin Reinecke's avatar
Martin Reinecke committed
210 211
        else:
            return NotImplemented
212 213

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
214 215 216 217
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
218 219

    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
220
        return data_object(self._shape, -self._data, self._distaxis)
221 222

    def __abs__(self):
223
        return data_object(self._shape, abs(self._data), self._distaxis)
224 225

    def all(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
226
        return self.sum() == self.size
227 228

    def any(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
229
        return self.sum() != 0
230

Martin Reinecke's avatar
fixes  
Martin Reinecke committed
231 232
    def fill(self, value):
        self._data.fill(value)
233

234

235 236 237 238 239 240 241 242 243 244 245 246 247 248
for op in ["__add__", "__radd__", "__iadd__",
           "__sub__", "__rsub__", "__isub__",
           "__mul__", "__rmul__", "__imul__",
           "__div__", "__rdiv__", "__idiv__",
           "__truediv__", "__rtruediv__", "__itruediv__",
           "__floordiv__", "__rfloordiv__", "__ifloordiv__",
           "__pow__", "__rpow__", "__ipow__",
           "__lt__", "__le__", "__gt__", "__ge__", "__eq__", "__ne__"]:
    def func(op):
        def func2(self, other):
            return self._binary_helper(other, op=op)
        return func2
    setattr(data_object, op, func(op))

Martin Reinecke's avatar
Martin Reinecke committed
249

Martin Reinecke's avatar
Martin Reinecke committed
250
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
251 252
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
253 254


Martin Reinecke's avatar
Martin Reinecke committed
255 256 257 258 259 260
def uniform_full(shape, fill_value, dtype=None, distaxis=0):
    return data_object(
        shape, np.broadcast_to(fill_value, local_shape(shape, distaxis)),
        distaxis)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
261
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
262 263
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
264 265


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
266
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
267 268
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
269 270


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
271
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
272 273
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
274 275 276 277 278 279 280


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
281
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
282
    if a._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
283
        return tmp[()]
Martin Reinecke's avatar
Martin Reinecke committed
284 285
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
286
    return res[()]
287 288 289


def _math_helper(x, function, out):
290
    function = getattr(np, function)
291 292 293 294
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
295
        return data_object(x.shape, function(x._data), x._distaxis)
296 297


298
_current_module = sys.modules[__name__]
Martin Reinecke's avatar
Martin Reinecke committed
299

300
for f in ["sqrt", "exp", "log", "tanh", "conjugate"]:
301 302 303 304 305
    def func(f):
        def func2(x, out=None):
            return _math_helper(x, f, out)
        return func2
    setattr(_current_module, f, func(f))
306 307


Martin Reinecke's avatar
Martin Reinecke committed
308 309 310 311 312 313 314 315 316 317 318 319
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    data = np.array(object._data, dtype=dtype, copy=copy)
    if set_locked:
Martin Reinecke's avatar
fix  
Martin Reinecke committed
320
        data.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
321
    return data_object(object._shape, data, distaxis=object._distaxis)
322 323


Martin Reinecke's avatar
Martin Reinecke committed
324 325
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
326 327 328
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
329
def from_random(random_type, shape, dtype=np.float64, **kwargs):
330
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
331
    if len(shape) == 0:
Martin Reinecke's avatar
Martin Reinecke committed
332 333 334
        ldat = generator_function(dtype=dtype, shape=shape, **kwargs)
        ldat = _comm.bcast(ldat)
        return from_local_data(shape, ldat, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
335 336 337 338 339 340 341
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
342

Martin Reinecke's avatar
Martin Reinecke committed
343

Martin Reinecke's avatar
Martin Reinecke committed
344 345 346 347
def local_data(arr):
    return arr._data


348 349
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
350
    if distaxis < 0:
351 352 353 354 355
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
356 357
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
358
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
359
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
360 361


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
362 363
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
364
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
365
    return res
Martin Reinecke's avatar
Martin Reinecke committed
366 367


368 369 370 371 372 373
def np_allreduce_min(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MIN)
    return res


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
374 375 376 377 378 379
def np_allreduce_max(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MAX)
    return res


Martin Reinecke's avatar
Martin Reinecke committed
380 381 382 383
def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
384
def from_local_data(shape, arr, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
385 386 387
    return data_object(shape, arr, distaxis)


388 389 390
def from_global_data(arr, sum_up=False, distaxis=0):
    if sum_up:
        arr = np_allreduce_sum(arr)
Martin Reinecke's avatar
Martin Reinecke committed
391
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
392
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
393
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
394
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
395
    sl[distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
396 397 398
    return data_object(arr.shape, arr[sl], distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
399 400
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
401 402 403 404 405
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
406
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
407 408 409
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
410
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
411 412 413 414 415 416
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
417
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
418 419
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
420
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
421
                break
Martin Reinecke's avatar
Martin Reinecke committed
422

Martin Reinecke's avatar
Martin Reinecke committed
423
    if arr._distaxis == -1:  # all data available, just pick the proper subset
424
        return from_global_data(arr._data, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
425
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
426
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
427 428
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
429
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
430 431 432 433
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
434
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
435 436
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
437 438 439 440
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
441
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
442
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
443

Martin Reinecke's avatar
Martin Reinecke committed
444
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
445
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
446
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
447 448 449
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
450
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
451 452 453 454 455 456 457 458 459 460 461 462
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
463
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
464 465 466 467 468 469
            ssz[i] = ssz0*(hi-lo)
            sbuf[ofs:ofs+ssz[i]] = arr._data[sslice].flat
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
470 471
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
472 473
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
474
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
475
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
476 477 478 479
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
Martin Reinecke's avatar
Martin Reinecke committed
480
        arrnew = np.empty(local_shape(arr.shape, dist), dtype=arr.dtype)
Martin Reinecke's avatar
Martin Reinecke committed
481 482 483 484
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
485
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
486
            sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
487
            arrnew[rslice].flat = rbuf[ofs:ofs+sz]
Martin Reinecke's avatar
Martin Reinecke committed
488
            ofs += sz
Martin Reinecke's avatar
Martin Reinecke committed
489
        arrnew = from_local_data(arr.shape, arrnew, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
490
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
491 492


Martin Reinecke's avatar
Martin Reinecke committed
493 494
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
495
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
496 497 498 499 500 501 502 503 504 505 506
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
507
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
508 509 510 511 512 513 514 515 516 517
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
518
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
519 520
    arrnew = np.empty((sz2, arr.shape[0]), dtype=arr.dtype)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
521 522 523
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
524
        arrnew[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
525
        ofs += sz
526
    return from_local_data((arr.shape[1], arr.shape[0]), arrnew, 0)
Martin Reinecke's avatar
Martin Reinecke committed
527 528


Martin Reinecke's avatar
Martin Reinecke committed
529 530
def default_distaxis():
    return 0
531 532 533 534 535 536 537 538


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable