plot.py 22.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

Martin Reinecke's avatar
Martin Reinecke committed
18
import os
Philipp Arras's avatar
Philipp Arras committed
19
from datetime import datetime as dt
Martin Reinecke's avatar
Martin Reinecke committed
20

21
22
import numpy as np

Martin Reinecke's avatar
fix    
Martin Reinecke committed
23
24
25
26
27
from .domains.gl_space import GLSpace
from .domains.hp_space import HPSpace
from .domains.power_space import PowerSpace
from .domains.rg_space import RGSpace
from .field import Field
Philipp Arras's avatar
Philipp Arras committed
28
from .minimization.iteration_controllers import EnergyHistory
29

Martin Reinecke's avatar
Martin Reinecke committed
30
31
32
33
34
35
36
37
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
38
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
39

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
40

Martin Reinecke's avatar
Martin Reinecke committed
41
42
43
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
44
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
45
    xc, yc = (xsize-1)*0.5, (ysize-1)*0.5
Martin Reinecke's avatar
Martin Reinecke committed
46
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
Martin Reinecke's avatar
Martin Reinecke committed
47
    u, v = 2*(u-xc)/(xc/1.02), (v-yc)/(yc/1.02)
Martin Reinecke's avatar
Martin Reinecke committed
48
49
50
51
52
53
54
55
56

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def _rgb_data(spectral_cube):
    _xyz = np.array(
          [[0.000160, 0.000662, 0.002362, 0.007242, 0.019110,
            0.043400, 0.084736, 0.140638, 0.204492, 0.264737,
            0.314679, 0.357719, 0.383734, 0.386726, 0.370702,
            0.342957, 0.302273, 0.254085, 0.195618, 0.132349,
            0.080507, 0.041072, 0.016172, 0.005132, 0.003816,
            0.015444, 0.037465, 0.071358, 0.117749, 0.172953,
            0.236491, 0.304213, 0.376772, 0.451584, 0.529826,
            0.616053, 0.705224, 0.793832, 0.878655, 0.951162,
            1.014160, 1.074300, 1.118520, 1.134300, 1.123990,
            1.089100, 1.030480, 0.950740, 0.856297, 0.754930,
            0.647467, 0.535110, 0.431567, 0.343690, 0.268329,
            0.204300, 0.152568, 0.112210, 0.081261, 0.057930,
            0.040851, 0.028623, 0.019941, 0.013842, 0.009577,
            0.006605, 0.004553, 0.003145, 0.002175, 0.001506,
            0.001045, 0.000727, 0.000508, 0.000356, 0.000251,
            0.000178, 0.000126, 0.000090, 0.000065, 0.000046,
            0.000033],
           [0.000017, 0.000072, 0.000253, 0.000769, 0.002004,
            0.004509, 0.008756, 0.014456, 0.021391, 0.029497,
            0.038676, 0.049602, 0.062077, 0.074704, 0.089456,
            0.106256, 0.128201, 0.152761, 0.185190, 0.219940,
            0.253589, 0.297665, 0.339133, 0.395379, 0.460777,
            0.531360, 0.606741, 0.685660, 0.761757, 0.823330,
            0.875211, 0.923810, 0.961988, 0.982200, 0.991761,
            0.999110, 0.997340, 0.982380, 0.955552, 0.915175,
            0.868934, 0.825623, 0.777405, 0.720353, 0.658341,
            0.593878, 0.527963, 0.461834, 0.398057, 0.339554,
            0.283493, 0.228254, 0.179828, 0.140211, 0.107633,
            0.081187, 0.060281, 0.044096, 0.031800, 0.022602,
            0.015905, 0.011130, 0.007749, 0.005375, 0.003718,
            0.002565, 0.001768, 0.001222, 0.000846, 0.000586,
            0.000407, 0.000284, 0.000199, 0.000140, 0.000098,
            0.000070, 0.000050, 0.000036, 0.000025, 0.000018,
            0.000013],
           [0.000705, 0.002928, 0.010482, 0.032344, 0.086011,
            0.197120, 0.389366, 0.656760, 0.972542, 1.282500,
            1.553480, 1.798500, 1.967280, 2.027300, 1.994800,
            1.900700, 1.745370, 1.554900, 1.317560, 1.030200,
            0.772125, 0.570060, 0.415254, 0.302356, 0.218502,
            0.159249, 0.112044, 0.082248, 0.060709, 0.043050,
            0.030451, 0.020584, 0.013676, 0.007918, 0.003988,
            0.001091, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000]])

    MATRIX_SRGB_D65 = np.array(
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
113
            [[3.2404542, -1.5371385, -0.4985314],
114
             [-0.9692660,  1.8760108,  0.0415560],
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
115
             [0.0556434, -0.2040259,  1.0572252]])
116
117
118
119
120
121

    def _gammacorr(inp):
        mask = np.zeros(inp.shape, dtype=np.float64)
        mask[inp <= 0.0031308] = 1.
        r1 = 12.92*inp
        a = 0.055
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
122
        r2 = (1 + a) * (np.maximum(inp, 0.0031308) ** (1/2.4)) - a
123
124
125
        return r1*mask + r2*(1.-mask)

    def lambda2xyz(lam):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
126
127
128
        lammin = 380.
        lammax = 780.
        lam = np.asarray(lam, dtype=np.float64)
129
130
131
132
133
134
        lam = np.clip(lam, lammin, lammax)

        idx = (lam-lammin)/(lammax-lammin)*(_xyz.shape[1]-1)
        ii = np.maximum(0, np.minimum(79, int(idx)))
        w1 = 1.-(idx-ii)
        w2 = 1.-w1
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
135
        c = w1*_xyz[:, ii] + w2*_xyz[:, ii+1]
136
137
138
139
140
141
142
        return c

    def getxyz(n):
        E0, E1 = 1./700., 1./400.
        E = E0 + np.arange(n)*(E1-E0)/(n-1)
        res = np.zeros((3, n), dtype=np.float64)
        for i in range(n):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
143
            res[:, i] = lambda2xyz(1./E[i])
144
145
        return res

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
146
147
148
149
150
151
152
153
    def to_logscale(arr, lo, hi):
        res = arr.clip(lo, hi)
        res = np.log(res/hi)
        tmp = np.log(hi/lo)
        res += tmp
        res /= tmp
        return res

Philipp Arras's avatar
Philipp Arras committed
154
    shp = spectral_cube.shape[:-1]+(3,)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
155
    spectral_cube = spectral_cube.reshape((-1, spectral_cube.shape[-1]))
156
157
    xyz = getxyz(spectral_cube.shape[-1])
    xyz_data = np.tensordot(spectral_cube, xyz, axes=[-1, -1])
Martin Reinecke's avatar
Martin Reinecke committed
158
159
    xyz_data /= xyz_data.max()
    xyz_data = to_logscale(xyz_data, max(1e-3, xyz_data.min()), 1.)
160
    rgb_data = xyz_data.copy()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
161
162
    for x in range(xyz_data.shape[0]):
        rgb_data[x] = _gammacorr(np.matmul(MATRIX_SRGB_D65, xyz_data[x]))
Martin Reinecke's avatar
Martin Reinecke committed
163
    rgb_data = rgb_data.clip(0., 1.)
Philipp Arras's avatar
Philipp Arras committed
164
    return rgb_data.reshape(shp)
165
166


Martin Reinecke's avatar
Martin Reinecke committed
167
168
def _find_closest(A, target):
    # A must be sorted
Martin Reinecke's avatar
Martin Reinecke committed
169
170
    idx = np.clip(A.searchsorted(target), 1, len(A)-1)
    idx -= target - A[idx-1] < A[idx] - target
Martin Reinecke's avatar
Martin Reinecke committed
171
172
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
173

Philipp Arras's avatar
Philipp Arras committed
174
def _makeplot(name, block=True, dpi=None):
175
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
176
    if name is None:
177
178
179
        plt.show(block=block)
        if block:
            plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
180
181
        return
    extension = os.path.splitext(name)[1]
182
    if extension in (".pdf", ".png", ".svg"):
Martin Reinecke's avatar
Martin Reinecke committed
183
        args = {}
Philipp Arras's avatar
Philipp Arras committed
184
185
186
        if dpi is not None:
            args['dpi'] = float(dpi)
        plt.savefig(name, **args)
Martin Reinecke's avatar
Martin Reinecke committed
187
188
189
190
        plt.close()
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
191

Martin Reinecke's avatar
Martin Reinecke committed
192
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
193
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
194
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
195
196
197
198
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
199
200
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
201

Martin Reinecke's avatar
Martin Reinecke committed
202
203
204
205
206
207
208
209
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    import matplotlib.pyplot as plt
Philipp Arras's avatar
Philipp Arras committed
210
    from matplotlib.colors import LinearSegmentedColormap
Martin Reinecke's avatar
Martin Reinecke committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
257
258
259

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
260
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
261
262
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
263
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
264

Martin Reinecke's avatar
Martin Reinecke committed
265

Philipp Arras's avatar
Philipp Arras committed
266
267
def _plot_history(f, ax, **kwargs):
    import matplotlib.pyplot as plt
268
    from matplotlib.dates import DateFormatter, date2num
Philipp Arras's avatar
Philipp Arras committed
269
270
271
272
273
274
275
276
277
278
279
280
    for i, fld in enumerate(f):
        if not isinstance(fld, EnergyHistory):
            raise TypeError
    label = kwargs.pop("label", None)
    if not isinstance(label, list):
        label = [label] * len(f)
    alpha = kwargs.pop("alpha", None)
    if not isinstance(alpha, list):
        alpha = [alpha] * len(f)
    color = kwargs.pop("color", None)
    if not isinstance(color, list):
        color = [color] * len(f)
Philipp Arras's avatar
Philipp Arras committed
281
282
283
    size = kwargs.pop("s", None)
    if not isinstance(size, list):
        size = [size] * len(f)
Philipp Arras's avatar
Philipp Arras committed
284
285
286
287
288
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    plt.xscale(kwargs.pop("xscale", "linear"))
    plt.yscale(kwargs.pop("yscale", "linear"))
Philipp Arras's avatar
Philipp Arras committed
289
    mi, ma = np.inf, -np.inf
Philipp Arras's avatar
Philipp Arras committed
290
    for i, fld in enumerate(f):
Philipp Arras's avatar
Philipp Arras committed
291
        xcoord = date2num([dt.fromtimestamp(ts) for ts in fld.time_stamps])
Philipp Arras's avatar
Philipp Arras committed
292
293
        ycoord = fld.energy_values
        ax.scatter(xcoord, ycoord, label=label[i], alpha=alpha[i],
Philipp Arras's avatar
Philipp Arras committed
294
295
296
297
298
299
                   color=color[i], s=size[i])
        mi, ma = min([min(xcoord), mi]), max([max(xcoord), ma])
    delta = (ma-mi)*0.05
    ax.set_xlim((mi-delta, ma+delta))
    xfmt = DateFormatter('%H:%M')
    ax.xaxis.set_major_formatter(xfmt)
Philipp Arras's avatar
Philipp Arras committed
300
301
302
303
304
    _limit_xy(**kwargs)
    if label != ([None]*len(f)):
        plt.legend()


305
def _plot1D(f, ax, **kwargs):
306
    import matplotlib.pyplot as plt
307

308
309
310
311
312
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
313
314
            if (len(dom) != 1):
                raise ValueError("input field must have exactly one domain")
315
316
317
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
318
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
319

clienhar's avatar
clienhar committed
320
    label = kwargs.pop("label", None)
321
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
322
        label = [label] * len(f)
Martin Reinecke's avatar
Martin Reinecke committed
323

Martin Reinecke's avatar
Martin Reinecke committed
324
    linewidth = kwargs.pop("linewidth", 1.)
Philipp Arras's avatar
Philipp Arras committed
325
    if not isinstance(linewidth, list):
Martin Reinecke's avatar
Martin Reinecke committed
326
        linewidth = [linewidth] * len(f)
Philipp Arras's avatar
Philipp Arras committed
327

clienhar's avatar
clienhar committed
328
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
329
    if not isinstance(alpha, list):
Martin Reinecke's avatar
Martin Reinecke committed
330
        alpha = [alpha] * len(f)
Philipp Arras's avatar
Philipp Arras committed
331

clienhar's avatar
clienhar committed
332
333
334
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
335

Martin Reinecke's avatar
Martin Reinecke committed
336
    if isinstance(dom, RGSpace):
337
        plt.yscale(kwargs.pop("yscale", "linear"))
338
339
340
341
        npoints = dom.shape[0]
        dist = dom.distances[0]
        xcoord = np.arange(npoints, dtype=np.float64)*dist
        for i, fld in enumerate(f):
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
342
            ycoord = fld.val
343
344
345
346
347
348
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
        _limit_xy(**kwargs)
        if label != ([None]*len(f)):
            plt.legend()
        return
Martin Reinecke's avatar
Martin Reinecke committed
349
    elif isinstance(dom, PowerSpace):
350
351
        plt.xscale(kwargs.pop("xscale", "log"))
        plt.yscale(kwargs.pop("yscale", "log"))
Philipp Arras's avatar
Philipp Arras committed
352
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
353
        for i, fld in enumerate(f):
Martin Reinecke's avatar
Martin Reinecke committed
354
            ycoord = fld.val_rw()
355
            ycoord[0] = ycoord[1]
Martin Reinecke's avatar
Martin Reinecke committed
356
357
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
358
        _limit_xy(**kwargs)
359
360
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
361
        return
362
363
364
365
366
367
368
369
    raise ValueError("Field type not(yet) supported")


def _plot2D(f, ax, **kwargs):
    import matplotlib.pyplot as plt

    dom = f.domain

370
371
372
373
374
    if len(dom) > 2:
        raise ValueError("DomainTuple can have at most two entries.")

    # check for multifrequency plotting
    have_rgb = False
375
    x_space = 0
376
    if len(dom) == 2:
377
        f_space = kwargs.pop("freq_space_idx", 1)
Philipp Arras's avatar
Philipp Arras committed
378
        if f_space not in [0, 1]:
379
380
            raise ValueError("Invalid frequency space index")
        if (not isinstance(dom[f_space], RGSpace)) \
Philipp Arras's avatar
Philipp Arras committed
381
           or len(dom[f_space].shape) != 1:
382
383
384
385
386
            raise TypeError("Need 1D RGSpace as frequency space domain")
        x_space = 1 - f_space

        # Only one frequency?
        if dom[f_space].shape[0] == 1:
Martin Reinecke's avatar
Martin Reinecke committed
387
            from .sugar import makeField
388
389
            f = makeField(f.domain[x_space],
                          f.val.squeeze(axis=dom.axes[f_space]))
390
        else:
391
392
393
394
            val = f.val
            if f_space == 0:
                val = np.moveaxis(val, 0, -1)
            rgb = _rgb_data(val)
395
            have_rgb = True
396
397
398

    foo = kwargs.pop("norm", None)
    norm = {} if foo is None else {'norm': foo}
Philipp Arras's avatar
Philipp Arras committed
399
400

    foo = kwargs.pop("aspect", None)
401
    aspect = {} if foo is None else {'aspect': foo}
402
403
404
405

    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
406
    dom = dom[x_space]
407
    if not have_rgb:
Philipp Arras's avatar
Philipp Arras committed
408
        cmap = kwargs.pop("cmap", plt.rcParams['image.cmap'])
409
410
411
412

    if isinstance(dom, RGSpace):
        nx, ny = dom.shape
        dx, dy = dom.distances
413
414
415
416
417
        if have_rgb:
            im = ax.imshow(
                rgb, extent=[0, nx*dx, 0, ny*dy], origin="lower", **norm,
                **aspect)
        else:
418
419
            from mpl_toolkits.axes_grid1 import make_axes_locatable
            
420
            im = ax.imshow(
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
421
                f.val.T, extent=[0, nx*dx, 0, ny*dy],
Philipp Arras's avatar
Philipp Arras committed
422
                vmin=kwargs.get("vmin"), vmax=kwargs.get("vmax"),
423
                cmap=cmap, origin="lower", **norm, **aspect)
424
425
426
427
428

             divider = make_axes_locatable(ax)
             cax = divider.append_axes("right", size="5%", pad=0.05)
 
             plt.colorbar(im, cax=cax)
429
430
        _limit_xy(**kwargs)
        return
Martin Reinecke's avatar
Martin Reinecke committed
431
    elif isinstance(dom, (HPSpace, GLSpace)):
432
        from ducc0.healpix import Healpix_Base
Martin Reinecke's avatar
Martin Reinecke committed
433
434
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
435
        if have_rgb:
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
436
437
            res = np.full(shape=res.shape+(3,), fill_value=1.,
                          dtype=np.float64)
438

Martin Reinecke's avatar
Martin Reinecke committed
439
440
441
442
        if isinstance(dom, HPSpace):
            ptg = np.empty((phi.size, 2), dtype=np.float64)
            ptg[:, 0] = theta
            ptg[:, 1] = phi
Martin Reinecke's avatar
switch    
Martin Reinecke committed
443
            base = Healpix_Base(int(np.sqrt(dom.size//12)), "RING")
444
445
446
            if have_rgb:
                res[mask] = rgb[base.ang2pix(ptg)]
            else:
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
447
                res[mask] = f.val[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
448
        else:
449
            from ducc0.misc import GL_thetas
Martin Reinecke's avatar
Martin Reinecke committed
450
            ra = np.linspace(0, 2*np.pi, dom.nlon+1)
Martin Reinecke's avatar
switch    
Martin Reinecke committed
451
            dec = GL_thetas(dom.nlat)
Martin Reinecke's avatar
Martin Reinecke committed
452
453
454
            ilat = _find_closest(dec, theta)
            ilon = _find_closest(ra, phi)
            ilon = np.where(ilon == dom.nlon, 0, ilon)
455
456
457
            if have_rgb:
                res[mask] = rgb[ilat*dom[0].nlon + ilon]
            else:
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
458
                res[mask] = f.val[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
459
        plt.axis('off')
460
461
462
        if have_rgb:
            plt.imshow(res, origin="lower")
        else:
Philipp Arras's avatar
Philipp Arras committed
463
            plt.imshow(res, vmin=kwargs.get("vmin"), vmax=kwargs.get("vmax"),
Philipp Arras's avatar
Philipp Arras committed
464
                       norm=norm.get('norm'), cmap=cmap, origin="lower")
465
            plt.colorbar(orientation="horizontal")
466
467
468
469
470
471
        return
    raise ValueError("Field type not(yet) supported")


def _plot(f, ax, **kwargs):
    _register_cmaps()
Philipp Arras's avatar
Philipp Arras committed
472
    if isinstance(f, Field) or isinstance(f, EnergyHistory):
473
474
475
476
        f = [f]
    f = list(f)
    if len(f) == 0:
        raise ValueError("need something to plot")
Philipp Arras's avatar
Philipp Arras committed
477
478
479
    if isinstance(f[0], EnergyHistory):
        _plot_history(f, ax, **kwargs)
        return
480
    if not isinstance(f[0], Field):
Martin Reinecke's avatar
Martin Reinecke committed
481
        raise TypeError("incorrect data type")
482
    dom1 = f[0].domain
Martin Reinecke's avatar
Martin Reinecke committed
483
484
    if (len(dom1) == 1 and
        (isinstance(dom1[0], PowerSpace) or
485
486
         (isinstance(dom1[0], RGSpace) and
          len(dom1[0].shape) == 1))):
487
488
489
490
491
492
        _plot1D(f, ax, **kwargs)
        return
    else:
        if len(f) != 1:
            raise ValueError("need exactly one Field for 2D plot")
        _plot2D(f[0], ax, **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
493
494
        return
    raise ValueError("Field type not(yet) supported")
Martin Reinecke's avatar
Martin Reinecke committed
495

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
496

497
498
499
500
501
502
503
504
505
506
class Plot(object):
    def __init__(self):
        self._plots = []
        self._kwargs = []

    def add(self, f, **kwargs):
        """Add a figure to the current list of plots.

        Notes
        -----
Philipp Arras's avatar
Docs    
Philipp Arras committed
507
508
        After doing one or more calls `add()`, one needs to call `output()` to
        show or save the plot.
509
510
511

        Parameters
        ----------
Philipp Arras's avatar
Philipp Arras committed
512
        f: Field or list of Field
Philipp Arras's avatar
Philipp Arras committed
513
            If `f` is a single Field, it must be defined on a single `RGSpace`,
Martin Reinecke's avatar
typo    
Martin Reinecke committed
514
            `PowerSpace`, `HPSpace`, `GLSpace`.
Philipp Arras's avatar
Philipp Arras committed
515
            If it is a list, all list members must be Fields defined over the
516
            same one-dimensional `RGSpace` or `PowerSpace`.
517
518
519

        Optional Parameters
        -------------------
520
        title: string
Philipp Arras's avatar
Docs    
Philipp Arras committed
521
            Title of the plot.
522
        xlabel: string
Philipp Arras's avatar
Philipp Arras committed
523
            Label for the x axis.
524
        ylabel: string
Philipp Arras's avatar
Philipp Arras committed
525
            Label for the y axis.
526
        [xyz]min, [xyz]max: float
Philipp Arras's avatar
Philipp Arras committed
527
            Limits for the values to plot.
Philipp Arras's avatar
Philipp Arras committed
528
        cmap: string
Philipp Arras's avatar
Philipp Arras committed
529
            Color map to use for the plot (if it is a 2D plot).
530
        linewidth: float or list of floats
Philipp Arras's avatar
Philipp Arras committed
531
            Line width.
532
        label: string of list of strings
Philipp Arras's avatar
Philipp Arras committed
533
            Annotation string.
534
        alpha: float or list of floats
Philipp Arras's avatar
Docs    
Philipp Arras committed
535
            Transparency value.
536
537
        freq_space_idx: int
            for multi-frequency plotting: index of frequency space in domain
538
        """
Philipp Arras's avatar
Philipp Arras committed
539
540
        from .multi_field import MultiField
        if isinstance(f, MultiField):
Philipp Arras's avatar
Philipp Arras committed
541
542
543
544
545
546
547
548
549
            for kk in f.domain.keys():
                self._plots.append(f[kk])
                mykwargs = kwargs.copy()
                if 'title' in kwargs:
                    mykwargs['title'] = "{} {}".format(kk, kwargs['title'])
                else:
                    mykwargs['title'] = "{}".format(kk)
                self._kwargs.append(mykwargs)
            return
550
551
552
553
554
555
556
557
558
        self._plots.append(f)
        self._kwargs.append(kwargs)

    def output(self, **kwargs):
        """Plot the accumulated list of figures.

        Parameters
        ----------
        title: string
Philipp Arras's avatar
Philipp Arras committed
559
560
561
562
563
564
565
566
            Title of the full plot.
        nx, ny: int
            Number of subplots to use in x- and y-direction.
            Default: square root of the numer of plots, rounded up.
        xsize, ysize: float
            Dimensions of the full plot in inches. Default: 6.
        name: string
            If left empty, the plot will be shown on the screen,
567
            otherwise it will be written to a file with the given name.
Philipp Arras's avatar
Philipp Arras committed
568
            Supported extensions: .png and .pdf. Default: None.
569
570
571
        block: bool
            Override the blocking behavior of the non-interactive plotting
            mode. The plot will not be closed in this case but is left open!
572
573
574
575
576
577
        """
        import matplotlib.pyplot as plt
        nplot = len(self._plots)
        fig = plt.figure()
        if "title" in kwargs:
            plt.suptitle(kwargs.pop("title"))
578
579
580
581
582
        nx = kwargs.pop("nx", 0)
        ny = kwargs.pop("ny", 0)
        if nx == ny == 0:
            nx = ny = int(np.ceil(np.sqrt(nplot)))
        elif nx == 0:
583
            nx = int(np.ceil(nplot/ny))
584
        elif ny == 0:
585
            ny = int(np.ceil(nplot/nx))
586
587
588
589
590
591
592
593
594
595
596
597
        if nx*ny < nplot:
            raise ValueError(
                'Figure dimensions not sufficient for number of plots. '
                'Available plot slots: {}, number of plots: {}'
                .format(nx*ny, nplot))
        xsize = kwargs.pop("xsize", 6)
        ysize = kwargs.pop("ysize", 6)
        fig.set_size_inches(xsize, ysize)
        for i in range(nplot):
            ax = fig.add_subplot(ny, nx, i+1)
            _plot(self._plots[i], ax, **self._kwargs[i])
        fig.tight_layout()
Lukas Platz's avatar
Lukas Platz committed
598
599
600
        _makeplot(kwargs.pop("name", None),
                  block=kwargs.pop("block", True),
                  dpi=kwargs.pop("dpi", None))