field.py 16.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

Martin Reinecke's avatar
Martin Reinecke committed
19
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20
from builtins import range
csongor's avatar
csongor committed
21
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
22
from . import utilities
Martin Reinecke's avatar
Martin Reinecke committed
23
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
24
from functools import reduce
25
from . import dobj
26

Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
27
28
__all__ = ["Field", "sqrt", "exp", "log", "conjugate"]

29

Martin Reinecke's avatar
Martin Reinecke committed
30
class Field(object):
Theo Steininger's avatar
Theo Steininger committed
31
32
33
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
34
    metainformation (i.e. the domain) for operators to be able to work on them.
Martin Reinecke's avatar
updates    
Martin Reinecke committed
35
    In addition, Field has methods to work with power spectra.
Theo Steininger's avatar
Theo Steininger committed
36

37
38
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
39
    domain : None, DomainTuple, tuple of DomainObjects, or single DomainObject
Theo Steininger's avatar
Theo Steininger committed
40

Martin Reinecke's avatar
Martin Reinecke committed
41
    val : None, Field, data_object, or scalar
42
        The values the array should contain after init. A scalar input will
Martin Reinecke's avatar
Martin Reinecke committed
43
44
        fill the whole array with this scalar. If a data_object is provided,
        its dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
45

46
    dtype : type
Martin Reinecke's avatar
updates    
Martin Reinecke committed
47
        A numpy.type. Most common are float and complex.
Theo Steininger's avatar
Theo Steininger committed
48

49
50
51
52
    copy: boolean

    Attributes
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
53
    val : data_object
Theo Steininger's avatar
Theo Steininger committed
54

Martin Reinecke's avatar
Martin Reinecke committed
55
    domain : DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
56

57
58
59
    dtype : type
        Contains the datatype stored in the Field.
    """
60

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
61
    def __init__(self, domain=None, val=None, dtype=None, copy=False):
62
        self.domain = self._parse_domain(domain=domain, val=val)
63

Martin Reinecke's avatar
Martin Reinecke committed
64
        dtype = self._infer_dtype(dtype=dtype, val=val)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
65
        if isinstance(val, Field):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
66
            if self.domain != val.domain:
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
67
                raise ValueError("Domain mismatch")
68
            self._val = dobj.from_object(val.val, dtype=dtype, copy=copy)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
69
        elif (np.isscalar(val)):
70
71
            self._val = dobj.full(self.domain.shape, dtype=dtype,
                                  fill_value=val)
72
        elif isinstance(val, dobj.data_object):
Martin Reinecke's avatar
Martin Reinecke committed
73
            if self.domain.shape == val.shape:
74
                self._val = dobj.from_object(val, dtype=dtype, copy=copy)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
75
76
77
            else:
                raise ValueError("Shape mismatch")
        elif val is None:
78
            self._val = dobj.empty(self.domain.shape, dtype=dtype)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
79
80
        else:
            raise TypeError("unknown source type")
csongor's avatar
csongor committed
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    @staticmethod
    def full(domain, val, dtype=None):
        if not np.isscalar(val):
            raise TypeError("val must be a scalar")
        return Field(DomainTuple.make(domain), val, dtype)

    @staticmethod
    def ones(domain, dtype=None):
        return Field(DomainTuple.make(domain), 1., dtype)

    @staticmethod
    def zeros(domain, dtype=None):
        return Field(DomainTuple.make(domain), 0., dtype)

    @staticmethod
    def empty(domain, dtype=None):
        return Field(DomainTuple.make(domain), None, dtype)

    @staticmethod
    def full_like(field, val, dtype=None):
        if not isinstance(field, Field):
            raise TypeError("field must be of Field type")
        return Field.full(field.domain, val, dtype)

    @staticmethod
    def zeros_like(field, dtype=None):
        if not isinstance(field, Field):
            raise TypeError("field must be of Field type")
        if dtype is None:
            dtype = field.dtype
        return Field.zeros(field.domain, dtype)

    @staticmethod
    def ones_like(field, dtype=None):
        if not isinstance(field, Field):
            raise TypeError("field must be of Field type")
        if dtype is None:
            dtype = field.dtype
        return Field.ones(field.domain, dtype)

    @staticmethod
    def empty_like(field, dtype=None):
        if not isinstance(field, Field):
            raise TypeError("field must be of Field type")
        if dtype is None:
            dtype = field.dtype
        return Field.empty(field.domain, dtype)

Martin Reinecke's avatar
Martin Reinecke committed
130
131
    @staticmethod
    def _parse_domain(domain, val=None):
132
        if domain is None:
133
            if isinstance(val, Field):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
134
135
                return val.domain
            if np.isscalar(val):
136
                return DomainTuple.make(())  # empty domain tuple
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
137
            raise TypeError("could not infer domain from value")
Martin Reinecke's avatar
Martin Reinecke committed
138
        return DomainTuple.make(domain)
139

Martin Reinecke's avatar
Martin Reinecke committed
140
141
    @staticmethod
    def _infer_dtype(dtype, val):
Martin Reinecke's avatar
Martin Reinecke committed
142
143
144
145
        if dtype is not None:
            return dtype
        if val is None:
            raise ValueError("could not infer dtype")
Martin Reinecke's avatar
Martin Reinecke committed
146
147
        if isinstance(val, Field):
            return val.dtype
Martin Reinecke's avatar
Martin Reinecke committed
148
        return np.result_type(val)
149

Martin Reinecke's avatar
Martin Reinecke committed
150
151
    @staticmethod
    def from_random(random_type, domain, dtype=np.float64, **kwargs):
152
153
154
155
156
157
158
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
159

160
161
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
162

163
164
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
165

166
167
168
169
170
        Returns
        -------
        out : Field
            The output object.
        """
Martin Reinecke's avatar
Martin Reinecke committed
171
        domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
172
173
174
        return Field(domain=domain,
                     val=dobj.from_random(random_type, dtype=dtype,
                                          shape=domain.shape, **kwargs))
175

Martin Reinecke's avatar
Martin Reinecke committed
176
177
178
    def fill(self, fill_value):
        self._val.fill(fill_value)

Theo Steininger's avatar
Theo Steininger committed
179
180
    @property
    def val(self):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
181
        """ Returns the data object associated with this Field.
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
182
        No copy is made.
183
        """
Martin Reinecke's avatar
Martin Reinecke committed
184
        return self._val
csongor's avatar
csongor committed
185

Martin Reinecke's avatar
Martin Reinecke committed
186
187
188
189
    @property
    def dtype(self):
        return self._val.dtype

190
191
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
192
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
193

194
195
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
196
197
        Integer tuple containing the dimensions of the spaces in domain.
        """
Martin Reinecke's avatar
Martin Reinecke committed
198
        return self.domain.shape
csongor's avatar
csongor committed
199

200
201
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
202
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
203

Theo Steininger's avatar
Theo Steininger committed
204
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
205

206
207
208
209
210
        Returns
        -------
        out : int
            The dimension of the Field.
        """
Martin Reinecke's avatar
Martin Reinecke committed
211
        return self.domain.dim
csongor's avatar
csongor committed
212

Theo Steininger's avatar
Theo Steininger committed
213
214
    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
215
        """ The real part of the field (data is not copied)."""
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
216
        return Field(self.domain, self.val.real)
Theo Steininger's avatar
Theo Steininger committed
217
218
219

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
220
        """ The imaginary part of the field (data is not copied)."""
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
221
        return Field(self.domain, self.val.imag)
Theo Steininger's avatar
Theo Steininger committed
222

Martin Reinecke's avatar
Martin Reinecke committed
223
    def copy(self):
224
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
225

Martin Reinecke's avatar
Martin Reinecke committed
226
        The returned object will be an identical copy of the original Field.
Theo Steininger's avatar
Theo Steininger committed
227

228
229
230
231
232
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.
        """
Martin Reinecke's avatar
Martin Reinecke committed
233
        return Field(val=self, copy=True)
csongor's avatar
csongor committed
234

235
236
    def scalar_weight(self, spaces=None):
        if np.isscalar(spaces):
237
            return self.domain[spaces].scalar_dvol()
238
239
240

        if spaces is None:
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
241
        res = 1.
242
        for i in spaces:
243
            tmp = self.domain[i].scalar_dvol()
244
245
246
247
248
            if tmp is None:
                return None
            res *= tmp
        return res

249
    def weight(self, power=1, spaces=None, out=None):
Theo Steininger's avatar
Theo Steininger committed
250
        """ Weights the pixels of `self` with their invidual pixel-volume.
251
252
253
254

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
255
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
256

Theo Steininger's avatar
Theo Steininger committed
257
258
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
259

260
261
262
263
264
        out : Field or None
            if not None, the result is returned in a new Field
            otherwise the contents of "out" are overwritten with the result.
            "out" may be identical to "self"!

265
266
267
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
268
            The weighted field.
269
        """
270
271
272
273
274
        if out is None:
            out = self.copy()
        else:
            if out is not self:
                out.copy_content_from(self)
csongor's avatar
csongor committed
275

csongor's avatar
csongor committed
276
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
277
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
278
279
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
csongor's avatar
csongor committed
280

281
282
        fct = 1.
        for ind in spaces:
283
            wgt = self.domain[ind].dvol()
284
285
286
            if np.isscalar(wgt):
                fct *= wgt
            else:
Martin Reinecke's avatar
Martin Reinecke committed
287
                new_shape = np.ones(len(self.shape), dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
288
289
                new_shape[self.domain.axes[ind][0]:
                          self.domain.axes[ind][-1]+1] = wgt.shape
290
                wgt = wgt.reshape(new_shape)
Martin Reinecke's avatar
Martin Reinecke committed
291
292
                if dobj.distaxis(self._val) >= 0 and ind == 0:
                    # we need to distribute the weights along axis 0
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
293
                    wgt = dobj.local_data(dobj.from_global_data(wgt))
294
                out *= wgt**power
295
        fct = fct**power
Martin Reinecke's avatar
Martin Reinecke committed
296
        if fct != 1.:
297
            out *= fct
298

299
        return out
csongor's avatar
csongor committed
300

Martin Reinecke's avatar
Martin Reinecke committed
301
    def vdot(self, x=None, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
302
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
303

304
305
306
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
307
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
308

Theo Steininger's avatar
Theo Steininger committed
309
        spaces : tuple of ints
310
311
            If the domain of `self` and `x` are not the same, `spaces` defines
            which domains of `x` are mapped to those of `self`.
Theo Steininger's avatar
Theo Steininger committed
312

313
314
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
315
        out : float, complex, either scalar or Field
316
        """
317
318
319
        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
320

Martin Reinecke's avatar
Martin Reinecke committed
321
        # Compute the dot respecting the fact of discrete/continuous spaces
Martin Reinecke's avatar
Martin Reinecke committed
322
323
        tmp = self.scalar_weight(spaces)
        if tmp is None:
324
            fct = 1.
Martin Reinecke's avatar
Martin Reinecke committed
325
            y = self.weight(power=1)
326
        else:
Martin Reinecke's avatar
Martin Reinecke committed
327
328
            y = self
            fct = tmp
Theo Steininger's avatar
Theo Steininger committed
329

330
        if spaces is None:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
331
            return fct*dobj.vdot(y.val, x.val)
Martin Reinecke's avatar
Martin Reinecke committed
332
333
334
335
336
337
338
339
340
341
342
343
344

        spaces = utilities.cast_iseq_to_tuple(spaces)
        if spaces == tuple(range(len(self.domain))):  # full contraction
            return fct*dobj.vdot(y.val, x.val)

        raise NotImplementedError("special case for vdot not yet implemented")
        active_axes = []
        for i in spaces:
            active_axes += self.domain.axes[i]
        res = 0.
        for sl in utilities.get_slice_list(self.shape, active_axes):
            res += dobj.vdot(y.val, x.val[sl])
        return res*fct
Theo Steininger's avatar
Theo Steininger committed
345

Theo Steininger's avatar
Theo Steininger committed
346
    def norm(self):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
347
        """ Computes the L2-norm of the field values.
csongor's avatar
csongor committed
348

Theo Steininger's avatar
Theo Steininger committed
349
350
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
351
        norm : float
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
352
            The L2-norm of the field values.
csongor's avatar
csongor committed
353
        """
354
        return np.sqrt(np.abs(self.vdot(x=self)))
csongor's avatar
csongor committed
355

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
356
    def conjugate(self):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
357
        """ Returns the complex conjugate of the field.
Theo Steininger's avatar
Theo Steininger committed
358

359
360
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
361
        The complex conjugated field.
csongor's avatar
csongor committed
362
        """
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
363
        return Field(self.domain, self.val.conjugate(), self.dtype)
csongor's avatar
csongor committed
364

Theo Steininger's avatar
Theo Steininger committed
365
    # ---General unary/contraction methods---
366

Theo Steininger's avatar
Theo Steininger committed
367
368
    def __pos__(self):
        return self.copy()
369

Theo Steininger's avatar
Theo Steininger committed
370
    def __neg__(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
371
        return Field(self.domain, -self.val, self.dtype)
csongor's avatar
csongor committed
372

Theo Steininger's avatar
Theo Steininger committed
373
    def __abs__(self):
374
        return Field(self.domain, dobj.abs(self.val), self.dtype)
csongor's avatar
csongor committed
375

376
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
377
        if spaces is None:
378
            return getattr(self.val, op)()
Martin Reinecke's avatar
Martin Reinecke committed
379
380
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
csongor's avatar
csongor committed
381

Martin Reinecke's avatar
Martin Reinecke committed
382
        axes_list = tuple(self.domain.axes[sp_index] for sp_index in spaces)
383

Martin Reinecke's avatar
Martin Reinecke committed
384
        if len(axes_list) > 0:
Theo Steininger's avatar
Theo Steininger committed
385
            axes_list = reduce(lambda x, y: x+y, axes_list)
csongor's avatar
csongor committed
386

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
387
        # perform the contraction on the data
388
        data = getattr(self.val, op)(axis=axes_list)
csongor's avatar
csongor committed
389

Theo Steininger's avatar
Theo Steininger committed
390
391
392
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
393
        else:
Martin Reinecke's avatar
Martin Reinecke committed
394
395
            return_domain = tuple(dom
                                  for i, dom in enumerate(self.domain)
Theo Steininger's avatar
Theo Steininger committed
396
                                  if i not in spaces)
397

Martin Reinecke's avatar
updates    
Martin Reinecke committed
398
            return Field(domain=return_domain, val=data, copy=False)
csongor's avatar
csongor committed
399

400
401
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
402

403
    def integrate(self, spaces=None):
Martin Reinecke's avatar
Martin Reinecke committed
404
405
406
407
408
        swgt = self.scalar_weight(spaces)
        if swgt is not None:
            res = self.sum(spaces)
            res *= swgt
            return res
409
410
411
        tmp = self.weight(1, spaces=spaces)
        return tmp.sum(spaces)

412
413
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
414

415
416
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
417

418
419
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
420

421
422
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
423

424
425
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
426

427
428
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
429

430
431
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
432

433
434
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
435

436
437
438
439
440
    def copy_content_from(self, other):
        if not isinstance(other, Field):
            raise TypeError("argument must be a Field")
        if other.domain != self.domain:
            raise ValueError("domains are incompatible.")
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
441
        dobj.local_data(self.val)[()] = dobj.local_data(other.val)[()]
442

443
    def _binary_helper(self, other, op):
csongor's avatar
csongor committed
444
        # if other is a field, make sure that the domains match
445
        if isinstance(other, Field):
446
447
            if other.domain != self.domain:
                raise ValueError("domains are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
448
449
            tval = getattr(self.val, op)(other.val)
            return self if tval is self.val else Field(self.domain, tval)
csongor's avatar
csongor committed
450

Martin Reinecke's avatar
Martin Reinecke committed
451
452
        tval = getattr(self.val, op)(other)
        return self if tval is self.val else Field(self.domain, tval)
csongor's avatar
csongor committed
453
454

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
455
        return self._binary_helper(other, op='__add__')
456

457
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
458
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
459
460

    def __iadd__(self, other):
461
        return self._binary_helper(other, op='__iadd__')
csongor's avatar
csongor committed
462
463

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
464
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
465
466

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
467
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
468
469

    def __isub__(self, other):
470
        return self._binary_helper(other, op='__isub__')
csongor's avatar
csongor committed
471
472

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
473
        return self._binary_helper(other, op='__mul__')
474

475
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
476
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
477
478

    def __imul__(self, other):
479
        return self._binary_helper(other, op='__imul__')
csongor's avatar
csongor committed
480
481

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
482
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
483

Martin Reinecke's avatar
Martin Reinecke committed
484
485
486
    def __truediv__(self, other):
        return self._binary_helper(other, op='__truediv__')

csongor's avatar
csongor committed
487
    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
488
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
489

Martin Reinecke's avatar
Martin Reinecke committed
490
491
492
    def __rtruediv__(self, other):
        return self._binary_helper(other, op='__rtruediv__')

csongor's avatar
csongor committed
493
    def __idiv__(self, other):
494
        return self._binary_helper(other, op='__idiv__')
495

csongor's avatar
csongor committed
496
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
497
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
498
499

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
500
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
501
502

    def __ipow__(self, other):
503
        return self._binary_helper(other, op='__ipow__')
csongor's avatar
csongor committed
504

Theo Steininger's avatar
Theo Steininger committed
505
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
506
        return "<nifty2go.Field>"
Theo Steininger's avatar
Theo Steininger committed
507
508
509
510

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
Martin Reinecke's avatar
Martin Reinecke committed
511
        return "nifty2go.Field instance\n- domain      = " + \
Theo Steininger's avatar
Theo Steininger committed
512
               repr(self.domain) + \
513
               "\n- val         = " + repr(self.val) + \
Theo Steininger's avatar
Theo Steininger committed
514
515
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543


# Arithmetic functions working on Fields

def _math_helper(x, function, out):
    if not isinstance(x, Field):
        raise TypeError("This function only accepts Field objects.")
    if out is not None:
        if not isinstance(out, Field) or x.domain != out.domain:
            raise ValueError("Bad 'out' argument")
        function(x.val, out=out.val)
        return out
    else:
        return Field(domain=x.domain, val=function(x.val))


def sqrt(x, out=None):
    return _math_helper(x, dobj.sqrt, out)


def exp(x, out=None):
    return _math_helper(x, dobj.exp, out)


def log(x, out=None):
    return _math_helper(x, dobj.log, out)


Martin Reinecke's avatar
Martin Reinecke committed
544
545
546
547
def tanh(x, out=None):
    return _math_helper(x, dobj.tanh, out)


Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
548
549
def conjugate(x, out=None):
    return _math_helper(x, dobj.conjugate, out)