iteration_controllers.py 12.2 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17 18

from ..logger import logger
Martin Reinecke's avatar
Martin Reinecke committed
19
from ..utilities import NiftyMeta
Martin Reinecke's avatar
Martin Reinecke committed
20
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
21
from time import time
Martin Reinecke's avatar
Martin Reinecke committed
22 23


Martin Reinecke's avatar
Martin Reinecke committed
24
class IterationController(metaclass=NiftyMeta):
Martin Reinecke's avatar
Martin Reinecke committed
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    """The abstract base class for all iteration controllers.
    An iteration controller is an object that monitors the progress of a
    minimization iteration. At the begin of the minimization, its start()
    method is called with the energy object at the initial position.
    Afterwards, its check() method is called during every iteration step with
    the energy object describing the current position.
    Based on that information, the iteration controller has to decide whether
    iteration needs to progress further (in this case it returns CONTINUE), or
    if sufficient convergence has been reached (in this case it returns
    CONVERGED), or if some error has been detected (then it returns ERROR).

    The concrete convergence criteria can be chosen by inheriting from this
    class; the implementer has full flexibility to use whichever criteria are
    appropriate for a particular problem - as long as they can be computed from
    the information passed to the controller during the iteration process.
    """

    CONVERGED, CONTINUE, ERROR = list(range(3))

    def start(self, energy):
        """Starts the iteration.

        Parameters
        ----------
        energy : Energy object
           Energy object at the start of the iteration

        Returns
        -------
        status : integer status, can be CONVERGED, CONTINUE or ERROR
        """
        raise NotImplementedError

    def check(self, energy):
        """Checks the state of the iteration. Called after every step.

        Parameters
        ----------
        energy : Energy object
           Energy object at the start of the iteration

        Returns
        -------
        status : integer status, can be CONVERGED, CONTINUE or ERROR
        """
        raise NotImplementedError


class GradientNormController(IterationController):
    """An iteration controller checking (mainly) the L2 gradient norm.

    Parameters
    ----------
    tol_abs_gradnorm : float, optional
        If the L2 norm of the energy gradient is below this value, the
        convergence counter will be increased in this iteration.
    tol_rel_gradnorm : float, optional
        If the L2 norm of the energy gradient divided by its initial L2 norm
        is below this value, the convergence counter will be increased in this
        iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

    def __init__(self, tol_abs_gradnorm=None, tol_rel_gradnorm=None,
                 convergence_level=1, iteration_limit=None, name=None):
        self._tol_abs_gradnorm = tol_abs_gradnorm
        self._tol_rel_gradnorm = tol_rel_gradnorm
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        if self._tol_rel_gradnorm is not None:
            self._tol_rel_gradnorm_now = self._tol_rel_gradnorm \
                                       * energy.gradient_norm
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1

        inclvl = False
        if self._tol_abs_gradnorm is not None:
            if energy.gradient_norm <= self._tol_abs_gradnorm:
                inclvl = True
        if self._tol_rel_gradnorm is not None:
            if energy.gradient_norm <= self._tol_rel_gradnorm_now:
                inclvl = True
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} gradnorm={:.2E} clvl={}"
                .format(self._name, self._itcount, energy.value,
                        energy.gradient_norm, self._ccount))
Martin Reinecke's avatar
Martin Reinecke committed
132 133 134 135 136

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
137
                    "{}Iteration limit reached. Assuming convergence"
Martin Reinecke's avatar
Martin Reinecke committed
138 139 140 141 142 143 144 145 146
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE


class GradInfNormController(IterationController):
Martin Reinecke's avatar
Martin Reinecke committed
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    """An iteration controller checking (mainly) the L_infinity gradient norm.

    Parameters
    ----------
    tol : float
        If the L_infinity norm of the energy gradient is below this value, the
        convergence counter will be increased in this iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

    def __init__(self, tol, convergence_level=1, iteration_limit=None,
Martin Reinecke's avatar
Martin Reinecke committed
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
                 name=None):
        self._tol = tol
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1

        crit = energy.gradient.norm(np.inf) / abs(energy.value)
        if self._tol is not None and crit <= self._tol:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} crit={:.2E} clvl={}"
                .format(self._name, self._itcount, energy.value,
                        crit, self._ccount))
Martin Reinecke's avatar
Martin Reinecke committed
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE


class DeltaEnergyController(IterationController):
Martin Reinecke's avatar
Martin Reinecke committed
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    """An iteration controller checking (mainly) the energy change from one
    iteration to the next.

    Parameters
    ----------
    tol_rel_deltaE : float
        If the difference between the last and current energies divided by
        the current energy is below this value, the convergence counter will
        be increased in this iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

Martin Reinecke's avatar
Martin Reinecke committed
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    def __init__(self, tol_rel_deltaE, convergence_level=1,
                 iteration_limit=None, name=None):
        self._tol_rel_deltaE = tol_rel_deltaE
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        self._Eold = 0.
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1

        inclvl = False
        Eval = energy.value
        rel = abs(self._Eold-Eval)/max(abs(self._Eold), abs(Eval))
        if self._itcount > 0:
            if rel < self._tol_rel_deltaE:
                inclvl = True
        self._Eold = Eval
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} reldiff={:.6E} clvl={}"
                .format(self._name, self._itcount, Eval, rel, self._ccount))

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE
Philipp Arras's avatar
Philipp Arras committed
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322


class AbsDeltaEnergyController(IterationController):
    """An iteration controller checking (mainly) the energy change from one
    iteration to the next.

    Parameters
    ----------
    deltaE : float
        If the difference between the last and current energies is below this
        value, the convergence counter will be increased in this iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

    def __init__(self, deltaE, convergence_level=1, iteration_limit=None,
                 name=None, file_name=None):
        self._deltaE = deltaE
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name
        self._file_name = file_name

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        self._Eold = 0.
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1

        inclvl = False
        Eval = energy.value
        diff = abs(self._Eold-Eval)
        if self._itcount > 0:
            if diff < self._deltaE:
                inclvl = True
        self._Eold = Eval
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
323 324 325
                "{}: Iteration #{} energy={:.6E} diff={:.6E} crit={:.1E} clvl={}"
                .format(self._name, self._itcount, Eval, diff, self._deltaE,
                        self._ccount))
Philipp Arras's avatar
Philipp Arras committed
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        # Write energy to file
        if self._file_name is not None:
            with open(self._file_name, 'a+') as f:
                f.write('{} {} {}\n'.format(time(), energy.value, diff))

        return self.CONTINUE