rg_space.py 7.88 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18
19
20
21
22
23
24
25
26
27

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
28
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
29
30
31

"""
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
32
from builtins import range
Martin Reinecke's avatar
Martin Reinecke committed
33
from functools import reduce
Marco Selig's avatar
Marco Selig committed
34
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
35
from ..space import Space
csongor's avatar
csongor committed
36

Marco Selig's avatar
Marco Selig committed
37

Theo Steininger's avatar
Theo Steininger committed
38
class RGSpace(Space):
Marco Selig's avatar
Marco Selig committed
39
40
41
42
43
44
45
46
47
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

Theo Steininger's avatar
Theo Steininger committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        Parameters
        ----------
        shape : {int, numpy.ndarray}
            Number of grid points or numbers of gridpoints along each axis.
        distances : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis
            (default: None).
            If distances==None:
                if harmonic==True, all distances will be set to 1
                if harmonic==False, the distance along each axis will be
                  set to the inverse of the number of points along that
                  axis.
        harmonic : bool, *optional*
        Whether the space represents a grid in position or harmonic space.
Theo Steininger's avatar
Theo Steininger committed
62
            (default: False).
Marco Selig's avatar
Marco Selig committed
63
64
65

        Attributes
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
66
        harmonic : bool
Theo Steininger's avatar
Theo Steininger committed
67
68
            Whether or not the grid represents a position or harmonic space.
        distances : tuple of floats
69
70
71
72
73
74
75
76
77
            Distance between two grid points along the correponding axis.
        dim : np.int
            Total number of dimensionality, i.e. the number of pixels.
        harmonic : bool
            Specifies whether the space is a signal or harmonic space.
        total_volume : np.float
            The total volume of the space.
        shape : tuple of np.ints
            The shape of the space's data array.
Theo Steininger's avatar
Theo Steininger committed
78

Marco Selig's avatar
Marco Selig committed
79
80
    """

81
82
    # ---Overwritten properties and methods---

Martin Reinecke's avatar
Martin Reinecke committed
83
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
84
        super(RGSpace, self).__init__()
85
        self._needed_for_hash += ["_distances", "_shape", "_harmonic"]
86

Martin Reinecke's avatar
Martin Reinecke committed
87
        self._harmonic = bool(harmonic)
88
89
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
Martin Reinecke's avatar
Martin Reinecke committed
90
        self._wgt = float(reduce(lambda x, y: x*y, self._distances))
Martin Reinecke's avatar
Martin Reinecke committed
91
        self._dim = int(reduce(lambda x, y: x*y, self._shape))
Marco Selig's avatar
Marco Selig committed
92

93
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
94
95
        return ("RGSpace(shape=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.distances, self.harmonic))
96

97
98
99
100
101
102
103
104
105
106
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
Martin Reinecke's avatar
Martin Reinecke committed
107
        return self._dim
108
109
110

    @property
    def total_volume(self):
Martin Reinecke's avatar
Martin Reinecke committed
111
        return self.dim * self._wgt
112

113
    def scalar_weight(self):
Martin Reinecke's avatar
Martin Reinecke committed
114
        return self._wgt
115

116
    def weight(self):
Martin Reinecke's avatar
Martin Reinecke committed
117
        return self._wgt
118

119
    def get_k_length_array(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
120
121
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
122
123
124
125
126
127
128
129
130
131
132
        res = np.arange(self.shape[0], dtype=np.float64)
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
            return res
        res *= res
        for i in range(1, len(self.shape)):
            tmp = np.arange(self.shape[i], dtype=np.float64)
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
        return np.sqrt(res)
theos's avatar
theos committed
133

134
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
135
136
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
154
            tmp = self.get_k_length_array().unique()  # expensive!
Martin Reinecke's avatar
Martin Reinecke committed
155
156
157
158
159
160
161
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

Martin Reinecke's avatar
Martin Reinecke committed
162
163
164
165
166
167
168
    @staticmethod
    def _kernel(x, sigma):
        tmp = x*x
        tmp *= -2.*np.pi*np.pi*sigma*sigma
        np.exp(tmp, out=tmp)
        return tmp

169
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
170
171
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
172
        return lambda x: self._kernel(x, sigma)
theos's avatar
theos committed
173

Martin Reinecke's avatar
Martin Reinecke committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    def get_default_codomain(self):
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
        if not np.all(
            np.absolute(np.array(self.shape) *
                        np.array(self.distances) *
                        np.array(codomain.distances) - 1) < 1e-7):
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

198
199
200
201
    # ---Added properties and methods---

    @property
    def distances(self):
Theo Steininger's avatar
Theo Steininger committed
202
203
204
        """Distance between two grid points along each axis. It is a tuple
        of positive floating point numbers with the n-th entry giving the
        distances of grid points along the n-th dimension.
205
        """
Theo Steininger's avatar
Theo Steininger committed
206

207
208
209
210
211
212
213
214
215
216
217
218
        return self._distances

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
Martin Reinecke's avatar
Martin Reinecke committed
219
                temp = np.ones_like(self.shape, dtype=np.float64)
220
            else:
Martin Reinecke's avatar
Martin Reinecke committed
221
                temp = 1 / np.array(self.shape, dtype=np.float64)
222
        else:
Martin Reinecke's avatar
Martin Reinecke committed
223
            temp = np.empty(len(self.shape), dtype=np.float64)
224
225
            temp[:] = distances
        return tuple(temp)