correlated_fields.py 23.6 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras, Philipp Haim
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22 23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
Philipp Arras's avatar
Philipp Arras committed
24 25
from ..field import Field
from ..multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
26
from ..operators.adder import Adder
27
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.diagonal_operator import DiagonalOperator
Philipp Arras's avatar
Philipp Arras committed
29
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
31
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
32
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.operator import Operator
Philipp Arras's avatar
Philipp Arras committed
34
from ..operators.simple_linear_operators import ducktape
35
from ..probing import StatCalculator
Philipp Frank's avatar
cleanup  
Philipp Frank committed
36
from ..sugar import from_global_data, full, makeDomain
37

38

Philipp Haim's avatar
Philipp Haim committed
39 40 41
def _reshaper(x, N):
    x = np.asfarray(x)
    if x.shape in [(), (1,)]:
Philipp Haim's avatar
Philipp Haim committed
42
        return np.full(N, x) if N != 0 else x.reshape(())
Philipp Haim's avatar
Philipp Haim committed
43 44
    elif x.shape == (N,):
        return x
45 46 47
    else:
        raise TypeError("Shape of parameters cannot be interpreted")

48

Martin Reinecke's avatar
Martin Reinecke committed
49
def _lognormal_moments(mean, sig, N=0):
Philipp Haim's avatar
Philipp Haim committed
50 51 52 53
    if N == 0:
        mean, sig = np.asfarray(mean), np.asfarray(sig)
    else:
        mean, sig = (_reshaper(param, N) for param in (mean, sig))
54 55 56 57 58
    if not np.all(mean > 0):
        raise ValueError(f"mean must be greater 0; got {mean!r}")
    if not np.all(sig > 0):
        raise ValueError(f"sig must be greater 0; got {sig!r}")

Philipp Arras's avatar
Philipp Arras committed
59 60
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
61
    return logmean, logsig
Philipp Arras's avatar
Philipp Arras committed
62 63


Martin Reinecke's avatar
Martin Reinecke committed
64
def _normal(mean, sig, key, N=0):
Philipp Haim's avatar
Philipp Haim committed
65
    if N == 0:
Philipp Haim's avatar
Philipp Haim committed
66
        domain = DomainTuple.scalar_domain()
Philipp Haim's avatar
Philipp Haim committed
67
        mean, sig = np.asfarray(mean), np.asfarray(sig)
Philipp Haim's avatar
Philipp Haim committed
68 69
    else:
        domain = UnstructuredDomain(N)
Philipp Haim's avatar
Philipp Haim committed
70
        mean, sig = (_reshaper(param, N) for param in (mean, sig))
Philipp Arras's avatar
Philipp Arras committed
71 72
    return Adder(from_global_data(domain, mean)) @ (DiagonalOperator(
        from_global_data(domain, sig)) @ ducktape(domain, None, key))
Philipp Arras's avatar
Philipp Arras committed
73 74


Philipp Arras's avatar
Philipp Arras committed
75
def _log_k_lengths(pspace):
Philipp Arras's avatar
Philipp Arras committed
76
    """Log(k_lengths) without zeromode"""
Philipp Arras's avatar
Philipp Arras committed
77 78 79
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
80
def _relative_log_k_lengths(power_space):
Philipp Arras's avatar
Philipp Arras committed
81 82
    """Log-distance to first bin
    logkl.shape==power_space.shape, logkl[0]=logkl[1]=0"""
Philipp Arras's avatar
Philipp Arras committed
83 84 85 86 87 88
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
Philipp Arras's avatar
Philipp Arras committed
89
    return np.insert(logkl, 0, 0)
Philipp Arras's avatar
Philipp Arras committed
90 91


Philipp Arras's avatar
Philipp Arras committed
92
def _log_vol(power_space):
93
    power_space = makeDomain(power_space)
Philipp Arras's avatar
Philipp Arras committed
94 95 96 97 98
    assert isinstance(power_space[0], PowerSpace)
    logk_lengths = _log_k_lengths(power_space[0])
    return logk_lengths[1:] - logk_lengths[:-1]


Philipp Haim's avatar
Philipp Haim committed
99
def _total_fluctuation_realized(samples):
100 101
    res = 0.
    for s in samples:
Philipp Haim's avatar
Fixes  
Philipp Haim committed
102
        res = res + (s - s.mean())**2
Philipp Haim's avatar
Philipp Haim committed
103
    return np.sqrt((res/len(samples)).mean())
104 105


Philipp Arras's avatar
Philipp Arras committed
106
class _LognormalMomentMatching(Operator):
Philipp Haim's avatar
Philipp Haim committed
107
    def __init__(self, mean, sig, key, N_copies):
Philipp Arras's avatar
Philipp Arras committed
108
        key = str(key)
Philipp Haim's avatar
Philipp Haim committed
109
        logmean, logsig = _lognormal_moments(mean, sig, N_copies)
Philipp Arras's avatar
Philipp Arras committed
110 111
        self._mean = mean
        self._sig = sig
Philipp Haim's avatar
Philipp Haim committed
112
        op = _normal(logmean, logsig, key, N_copies).exp()
Philipp Arras's avatar
Philipp Arras committed
113 114 115 116 117 118 119 120 121 122
        self._domain, self._target = op.domain, op.target
        self.apply = op.apply

    @property
    def mean(self):
        return self._mean

    @property
    def std(self):
        return self._sig
Philipp Arras's avatar
Philipp Arras committed
123 124


Philipp Frank's avatar
Philipp Frank committed
125
class _SlopeRemover(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
126
    def __init__(self, domain, space=0):
Philipp Frank's avatar
Philipp Frank committed
127
        self._domain = makeDomain(domain)
128 129
        assert isinstance(self._domain[space], PowerSpace)
        logkl = _relative_log_k_lengths(self._domain[space])
130
        self._sc = logkl/float(logkl[-1])
Philipp Arras's avatar
Philipp Arras committed
131

132
        self._space = space
Philipp Haim's avatar
Philipp Haim committed
133 134 135
        axis = self._domain.axes[space][0]
        self._last = (slice(None),)*axis + (-1,) + (None,)
        self._extender = (None,)*(axis) + (slice(None),) + (None,)*(self._domain.axes[-1][-1]-axis)
Philipp Frank's avatar
Philipp Frank committed
136
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
137

138 139
    def apply(self, x, mode):
        self._check_input(x, mode)
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
140
        x = x.val
Philipp Frank's avatar
Philipp Frank committed
141
        if mode == self.TIMES:
Philipp Haim's avatar
Philipp Haim committed
142
            res = x - x[self._last]*self._sc[self._extender]
Philipp Frank's avatar
Philipp Frank committed
143
        else:
144 145
            res = x.copy()
            res[self._last] -= (x*self._sc[self._extender]).sum(
Philipp Arras's avatar
Philipp Arras committed
146
                axis=self._space, keepdims=True)
147
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
148

Philipp Arras's avatar
Philipp Arras committed
149 150

class _TwoLogIntegrations(LinearOperator):
Martin Reinecke's avatar
Martin Reinecke committed
151
    def __init__(self, target, space=0):
Philipp Arras's avatar
Philipp Arras committed
152
        self._target = makeDomain(target)
153 154 155 156 157
        assert isinstance(self.target[space], PowerSpace)
        dom = list(self._target)
        dom[space] = UnstructuredDomain((2, self.target[space].shape[0]-2))
        self._domain = makeDomain(dom)
        self._space = space
158
        self._log_vol = _log_vol(self._target[space])
Philipp Arras's avatar
Philipp Arras committed
159 160 161 162
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
163

Martin Reinecke's avatar
Martin Reinecke committed
164
        # Maybe make class properties
165 166
        axis = self._target.axes[self._space][0]
        sl = (slice(None),)*axis
Philipp Haim's avatar
Fixes  
Philipp Haim committed
167
        extender_sl = (None,)*axis + (slice(None),) + (None,)*(self._target.axes[-1][-1] - axis)
168 169
        first = sl + (0,)
        second = sl + (1,)
Martin Reinecke's avatar
Martin Reinecke committed
170 171 172
        from_third = sl + (slice(2, None),)
        no_border = sl + (slice(1, -1),)
        reverse = sl + (slice(None, None, -1),)
173

Philipp Arras's avatar
Philipp Arras committed
174
        if mode == self.TIMES:
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
175
            x = x.val
Philipp Arras's avatar
Philipp Arras committed
176
            res = np.empty(self._target.shape)
177
            res[first] = res[second] = 0
Martin Reinecke's avatar
Martin Reinecke committed
178
            res[from_third] = np.cumsum(x[second], axis=axis)
179
            res[from_third] = (res[from_third] + res[no_border])/2*self._log_vol[extender_sl] + x[first]
Martin Reinecke's avatar
Martin Reinecke committed
180
            res[from_third] = np.cumsum(res[from_third], axis=axis)
Philipp Arras's avatar
Philipp Arras committed
181
        else:
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
182
            x = x.val.copy()
Philipp Arras's avatar
Philipp Arras committed
183
            res = np.zeros(self._domain.shape)
Martin Reinecke's avatar
Martin Reinecke committed
184
            x[from_third] = np.cumsum(x[from_third][reverse], axis=axis)[reverse]
185
            res[first] += x[from_third]
186
            x[from_third] *= (self._log_vol/2.)[extender_sl]
187
            x[no_border] += x[from_third]
Martin Reinecke's avatar
Martin Reinecke committed
188
            res[second] += np.cumsum(x[from_third][reverse], axis=axis)[reverse]
189
        return from_global_data(self._tgt(mode), res)
Philipp Arras's avatar
Philipp Arras committed
190 191 192


class _Normalization(Operator):
Martin Reinecke's avatar
Martin Reinecke committed
193
    def __init__(self, domain, space=0):
Philipp Arras's avatar
Philipp Arras committed
194
        self._domain = self._target = makeDomain(domain)
195
        assert isinstance(self._domain[space], PowerSpace)
196 197 198
        hspace = list(self._domain)
        hspace[space] = hspace[space].harmonic_partner
        hspace = makeDomain(hspace)
Philipp Arras's avatar
Philipp Arras committed
199 200 201
        pd = PowerDistributor(hspace,
                              power_space=self._domain[space],
                              space=space)
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
202
        mode_multiplicity = pd.adjoint(full(pd.target, 1.)).val.copy()
203
        zero_mode = (slice(None),)*self._domain.axes[space][0] + (0,)
Philipp Haim's avatar
Philipp Haim committed
204
        mode_multiplicity[zero_mode] = 0
Philipp Arras's avatar
Philipp Arras committed
205 206
        self._mode_multiplicity = from_global_data(self._domain,
                                                   mode_multiplicity)
207
        self._specsum = _SpecialSum(self._domain, space)
Philipp Arras's avatar
Philipp Arras committed
208 209 210 211 212 213 214

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
215
        return self._specsum(self._mode_multiplicity*spec)**(-0.5)*amp
Philipp Arras's avatar
Philipp Arras committed
216 217 218


class _SpecialSum(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
219
    def __init__(self, domain, space=0):
Philipp Arras's avatar
Philipp Arras committed
220 221
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES
222
        self._contractor = ContractionOperator(domain, space)
Philipp Arras's avatar
Philipp Arras committed
223 224 225

    def apply(self, x, mode):
        self._check_input(x, mode)
226
        return self._contractor.adjoint(self._contractor(x))
Philipp Arras's avatar
Philipp Arras committed
227 228


Philipp Haim's avatar
Philipp Haim committed
229
class _Distributor(LinearOperator):
Martin Reinecke's avatar
Martin Reinecke committed
230
    def __init__(self, dofdex, domain, target, space=0):
Philipp Haim's avatar
Philipp Haim committed
231 232 233 234 235 236 237 238 239
        self._dofdex = dofdex

        self._target = makeDomain(target)
        self._domain = makeDomain(domain)
        self._sl = (slice(None),)*space
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
240
        x = x.val
Philipp Haim's avatar
Philipp Haim committed
241 242 243 244 245 246
        if mode == self.TIMES:
            res = x[self._dofdex]
        else:
            res = np.empty(self._tgt(mode).shape)
            res[self._dofdex] = x
        return from_global_data(self._tgt(mode), res)
Martin Reinecke's avatar
Martin Reinecke committed
247

248

249 250
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
251
                 loglogavgslope, azm, totvol, key, dofdex):
Philipp Arras's avatar
Philipp Arras committed
252 253 254 255 256 257 258 259 260 261 262
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)

Philipp Haim's avatar
Philipp Haim committed
263 264
        if len(dofdex) > 0:
            N_copies = max(dofdex) + 1
Philipp Haim's avatar
Philipp Haim committed
265
            space = 1
Philipp Frank's avatar
cleanup  
Philipp Frank committed
266 267
            distributed_tgt = makeDomain((UnstructuredDomain(len(dofdex)),
                                          target))
Philipp Haim's avatar
Philipp Haim committed
268 269 270
            target = makeDomain((UnstructuredDomain(N_copies), target))
            Distributor = _Distributor(dofdex, target, distributed_tgt, 0)
        else:
Philipp Haim's avatar
Philipp Haim committed
271
            N_copies = 0
Philipp Haim's avatar
Philipp Haim committed
272
            space = 0
Philipp Haim's avatar
Philipp Haim committed
273
            distributed_tgt = target = makeDomain(target)
Martin Reinecke's avatar
Martin Reinecke committed
274
        azm_expander = ContractionOperator(distributed_tgt, spaces=space).adjoint
Philipp Haim's avatar
Philipp Haim committed
275
        assert isinstance(target[space], PowerSpace)
Martin Reinecke's avatar
Martin Reinecke committed
276

277
        twolog = _TwoLogIntegrations(target, space)
Philipp Arras's avatar
Philipp Arras committed
278
        dom = twolog.domain
279

280
        shp = dom[space].shape
Martin Reinecke's avatar
Martin Reinecke committed
281 282
        expander = ContractionOperator(dom, spaces=space).adjoint
        ps_expander = ContractionOperator(twolog.target, spaces=space).adjoint
Philipp Arras's avatar
Philipp Arras committed
283 284 285

        # Prepare constant fields
        foo = np.zeros(shp)
286 287
        foo[0] = foo[1] = np.sqrt(_log_vol(target[space]))
        vflex = DiagonalOperator(from_global_data(dom[space], foo), dom, space)
Philipp Arras's avatar
Philipp Arras committed
288 289 290

        foo = np.zeros(shp, dtype=np.float64)
        foo[0] += 1
291
        vasp = DiagonalOperator(from_global_data(dom[space], foo), dom, space)
Philipp Arras's avatar
Philipp Arras committed
292 293

        foo = np.ones(shp)
294 295
        foo[0] = _log_vol(target[space])**2/12.
        shift = DiagonalOperator(from_global_data(dom[space], foo), dom, space)
Martin Reinecke's avatar
Martin Reinecke committed
296

297
        vslope = DiagonalOperator(
Martin Reinecke's avatar
Martin Reinecke committed
298 299 300
            from_global_data(target[space],
                             _relative_log_k_lengths(target[space])),
            target, space)
301 302

        foo, bar = [np.zeros(target[space].shape) for _ in range(2)]
Philipp Arras's avatar
Philipp Arras committed
303
        bar[1:] = foo[0] = totvol
Martin Reinecke's avatar
Martin Reinecke committed
304
        vol0, vol1 = [DiagonalOperator(from_global_data(target[space], aa),
Philipp Frank's avatar
cleanup  
Philipp Frank committed
305
                                       target, space) for aa in (foo, bar)]
306

Martin Reinecke's avatar
Martin Reinecke committed
307
        # Prepare fields for Adder
308
        shift, vol0 = [op(full(op.domain, 1)) for op in (shift, vol0)]
Philipp Arras's avatar
Philipp Arras committed
309 310
        # End prepare constant fields

311 312 313 314
        slope = vslope @ ps_expander @ loglogavgslope
        sig_flex = vflex @ expander @ flexibility
        sig_asp = vasp @ expander @ asperity
        sig_fluc = vol1 @ ps_expander @ fluctuations
Philipp Haim's avatar
Philipp Haim committed
315
        sig_fluc = vol1 @ ps_expander @ fluctuations
Philipp Arras's avatar
Philipp Arras committed
316 317

        xi = ducktape(dom, None, key)
Philipp Arras's avatar
Philipp Arras committed
318
        sigma = sig_flex*(Adder(shift) @ sig_asp).sqrt()
319 320
        smooth = _SlopeRemover(target, space) @ twolog @ (sigma*xi)
        op = _Normalization(target, space) @ (slope + smooth)
Philipp Haim's avatar
Philipp Haim committed
321
        if N_copies > 0:
Philipp Haim's avatar
Philipp Haim committed
322 323
            op = Distributor @ op
            sig_fluc = Distributor @ sig_fluc
Philipp Haim's avatar
Philipp Haim committed
324
            op = Adder(Distributor(vol0)) @ (sig_fluc*(azm_expander @ azm.one_over())*op)
Philipp Arras's avatar
Philipp Arras committed
325 326
            self._fluc = (_Distributor(dofdex, fluctuations.target,
                                       distributed_tgt[0]) @ fluctuations)
Philipp Haim's avatar
Philipp Haim committed
327
        else:
Philipp Frank's avatar
cleanup  
Philipp Frank committed
328
            op = Adder(vol0) @ (sig_fluc*(azm_expander @ azm.one_over())*op)
Philipp Frank's avatar
fixup  
Philipp Frank committed
329
            self._fluc = fluctuations
Philipp Arras's avatar
Philipp Arras committed
330

Philipp Arras's avatar
Philipp Arras committed
331 332
        self.apply = op.apply
        self._domain, self._target = op.domain, op.target
333
        self._space = space
Philipp Arras's avatar
Philipp Arras committed
334

Philipp Arras's avatar
Philipp Arras committed
335 336 337 338
    @property
    def fluctuation_amplitude(self):
        return self._fluc

339 340

class CorrelatedFieldMaker:
Philipp Haim's avatar
Philipp Haim committed
341
    def __init__(self, amplitude_offset, prefix, total_N):
342 343
        if not isinstance(amplitude_offset, Operator):
            raise TypeError("amplitude_offset needs to be an operator")
344
        self._a = []
345
        self._position_spaces = []
Philipp Arras's avatar
Formats  
Philipp Arras committed
346

347 348
        self._azm = amplitude_offset
        self._prefix = prefix
Philipp Haim's avatar
Philipp Haim committed
349
        self._total_N = total_N
Philipp Arras's avatar
Formats  
Philipp Arras committed
350

351
    @staticmethod
Philipp Frank's avatar
Philipp Frank committed
352
    def make(offset_amplitude_mean, offset_amplitude_stddev, prefix,
Martin Reinecke's avatar
Martin Reinecke committed
353 354
             total_N=0,
             dofdex=None):
Philipp Frank's avatar
Philipp Frank committed
355 356
        if dofdex is None:
            dofdex = np.full(total_N, 0)
357 358
        elif len(dofdex) != total_N:
            raise ValueError("length of dofdex needs to match total_N")
Philipp Frank's avatar
Philipp Frank committed
359
        N = max(dofdex) + 1 if total_N > 0 else 0
360 361
        zm = _LognormalMomentMatching(offset_amplitude_mean,
                                      offset_amplitude_stddev,
Philipp Haim's avatar
Philipp Haim committed
362
                                      prefix + 'zeromode',
Philipp Frank's avatar
Philipp Frank committed
363
                                      N)
Philipp Frank's avatar
fixup  
Philipp Frank committed
364
        if total_N > 0:
Martin Reinecke's avatar
Martin Reinecke committed
365
            zm = _Distributor(dofdex, zm.target, UnstructuredDomain(total_N)) @ zm
Philipp Haim's avatar
Philipp Haim committed
366
        return CorrelatedFieldMaker(zm, prefix, total_N)
367 368

    def add_fluctuations(self,
369
                         position_space,
370 371 372 373 374 375 376 377
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
Martin Reinecke's avatar
Martin Reinecke committed
378 379 380 381
                         prefix='',
                         index=None,
                         dofdex=None,
                         harmonic_partner=None):
Philipp Frank's avatar
Philipp Frank committed
382 383
        if harmonic_partner is None:
            harmonic_partner = position_space.get_default_codomain()
Philipp Frank's avatar
Fixup  
Philipp Frank committed
384 385 386
        else:
            position_space.check_codomain(harmonic_partner)
            harmonic_partner.check_codomain(position_space)
387

Philipp Haim's avatar
Philipp Haim committed
388 389
        if dofdex is None:
            dofdex = np.full(self._total_N, 0)
390 391
        elif len(dofdex) != self._total_N:
            raise ValueError("length of dofdex needs to match total_N")
Philipp Haim's avatar
Philipp Haim committed
392

Philipp Haim's avatar
Philipp Haim committed
393
        if self._total_N > 0:
Philipp Haim's avatar
Philipp Haim committed
394
            space = 1
Philipp Haim's avatar
Philipp Haim committed
395 396
            N = max(dofdex) + 1
            position_space = makeDomain((UnstructuredDomain(N), position_space))
Philipp Haim's avatar
Philipp Haim committed
397 398
        else:
            space = 0
Philipp Haim's avatar
Philipp Haim committed
399
            N = 0
Philipp Haim's avatar
Philipp Haim committed
400
            position_space = makeDomain(position_space)
Philipp Arras's avatar
Philipp Arras committed
401
        prefix = str(prefix)
Martin Reinecke's avatar
Martin Reinecke committed
402
        # assert isinstance(position_space[space], (RGSpace, HPSpace, GLSpace)
Philipp Arras's avatar
Philipp Arras committed
403

Philipp Arras's avatar
Philipp Arras committed
404 405
        fluct = _LognormalMomentMatching(fluctuations_mean,
                                         fluctuations_stddev,
406
                                         self._prefix + prefix + 'fluctuations',
Philipp Haim's avatar
Philipp Haim committed
407
                                         N)
Philipp Arras's avatar
Philipp Arras committed
408
        flex = _LognormalMomentMatching(flexibility_mean, flexibility_stddev,
409
                                        self._prefix + prefix + 'flexibility',
Philipp Haim's avatar
Philipp Haim committed
410
                                        N)
Philipp Arras's avatar
Philipp Arras committed
411
        asp = _LognormalMomentMatching(asperity_mean, asperity_stddev,
Martin Reinecke's avatar
Martin Reinecke committed
412
                                       self._prefix + prefix + 'asperity',
Philipp Haim's avatar
Philipp Haim committed
413
                                       N)
414
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
415
                        self._prefix + prefix + 'loglogavgslope', N)
Philipp Frank's avatar
Philipp Frank committed
416
        amp = _Amplitude(PowerSpace(harmonic_partner),
Martin Reinecke's avatar
Martin Reinecke committed
417
                         fluct, flex, asp, avgsl, self._azm,
Philipp Frank's avatar
fixup  
Philipp Frank committed
418
                         position_space[-1].total_volume,
419
                         self._prefix + prefix + 'spectrum', dofdex)
Philipp Haim's avatar
Philipp Haim committed
420

421 422
        if index is not None:
            self._a.insert(index, amp)
423
            self._position_spaces.insert(index, position_space)
424 425
        else:
            self._a.append(amp)
426
            self._position_spaces.append(position_space)
427

Philipp Frank's avatar
fixup  
Philipp Frank committed
428
    def _finalize_from_op(self):
Philipp Haim's avatar
Philipp Haim committed
429
        n_amplitudes = len(self._a)
Philipp Haim's avatar
Philipp Haim committed
430
        if self._total_N > 0:
Philipp Arras's avatar
Philipp Arras committed
431 432 433
            hspace = makeDomain(
                [UnstructuredDomain(self._total_N)] +
                [dd.target[-1].harmonic_partner for dd in self._a])
Philipp Haim's avatar
Philipp Haim committed
434 435
            spaces = tuple(range(1, n_amplitudes + 1))
            amp_space = 1
Philipp Haim's avatar
Philipp Haim committed
436 437
        else:
            hspace = makeDomain(
Philipp Arras's avatar
Philipp Arras committed
438
                [dd.target[0].harmonic_partner for dd in self._a])
Philipp Haim's avatar
Philipp Haim committed
439
            spaces = tuple(range(n_amplitudes))
Philipp Haim's avatar
Philipp Haim committed
440
            amp_space = 0
441

Martin Reinecke's avatar
Martin Reinecke committed
442
        expander = ContractionOperator(hspace, spaces=spaces).adjoint
Philipp Frank's avatar
fixup  
Philipp Frank committed
443
        azm = expander @ self._azm
444

445
        ht = HarmonicTransformOperator(hspace,
Philipp Haim's avatar
Philipp Haim committed
446
                                       self._position_spaces[0][amp_space],
Martin Reinecke's avatar
Martin Reinecke committed
447
                                       space=spaces[0])
448
        for i in range(1, n_amplitudes):
449
            ht = (HarmonicTransformOperator(ht.target,
Philipp Haim's avatar
Philipp Haim committed
450
                                            self._position_spaces[i][amp_space],
Martin Reinecke's avatar
Martin Reinecke committed
451
                                            space=spaces[i]) @ ht)
452

Philipp Haim's avatar
Philipp Haim committed
453
        pd = PowerDistributor(hspace, self._a[0].target[amp_space], amp_space)
454
        for i in range(1, n_amplitudes):
Philipp Arras's avatar
Philipp Arras committed
455 456
            pd = (pd @ PowerDistributor(
                pd.domain, self._a[i].target[amp_space], space=spaces[i]))
Philipp Arras's avatar
Philipp Arras committed
457

458 459
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
Philipp Arras's avatar
Philipp Arras committed
460
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[i + 1:])
461
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
462

Philipp Frank's avatar
fixup  
Philipp Frank committed
463
        return ht(azm*(pd @ a)*ducktape(hspace, None, self._prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
464

Philipp Arras's avatar
Formats  
Philipp Arras committed
465
    def finalize(self, offset=None, prior_info=100):
Philipp Arras's avatar
Philipp Arras committed
466 467 468
        """
        offset vs zeromode: volume factor
        """
Philipp Frank's avatar
fixup  
Philipp Frank committed
469
        op = self._finalize_from_op()
Philipp Arras's avatar
Philipp Arras committed
470
        if offset is not None:
471 472 473 474 475 476 477
            # Deviations from this offset must not be considered here as they
            # are learned by the zeromode
            if isinstance(offset, (Field, MultiField)):
                op = Adder(offset) @ op
            else:
                offset = float(offset)
                op = Adder(full(op.target, offset)) @ op
478
        self.statistics_summary(prior_info)
479 480
        return op

481 482 483 484 485 486
    def statistics_summary(self, prior_info):
        from ..sugar import from_random

        if prior_info == 0:
            return

487 488
        lst = [('Offset amplitude', self.amplitude_total_offset),
               ('Total fluctuation amplitude', self.total_fluctuation)]
489
        namps = len(self._a)
490 491 492 493 494 495 496 497
        if namps > 1:
            for ii in range(namps):
                lst.append(('Slice fluctuation (space {})'.format(ii),
                            self.slice_fluctuation(ii)))
                lst.append(('Average fluctuation (space {})'.format(ii),
                            self.average_fluctuation(ii)))

        for kk, op in lst:
498 499 500
            sc = StatCalculator()
            for _ in range(prior_info):
                sc.add(op(from_random('normal', op.domain)))
Martin Reinecke's avatar
merge  
Martin Reinecke committed
501 502
            mean = sc.mean.val
            stddev = sc.var.sqrt().val
503 504
            for m, s in zip(mean.flatten(), stddev.flatten()):
                print('{}: {:.02E} ± {:.02E}'.format(kk, m, s))
505 506 507

    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
        fluctuations_slice_mean = float(fluctuations_slice_mean)
508 509 510
        if not fluctuations_slice_mean > 0:
            msg = "fluctuations_slice_mean must be greater zero; got {!r}"
            raise ValueError(msg.format(fluctuations_slice_mean))
511
        from ..sugar import from_random
512 513
        scm = 1.
        for a in self._a:
Philipp Haim's avatar
Philipp Haim committed
514
            op = a.fluctuation_amplitude*self._azm.one_over()
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
515
            res = np.array([op(from_random('normal', op.domain)).val
516 517
                            for _ in range(nsamples)])
            scm *= res**2 + 1.
518
        return fluctuations_slice_mean/np.mean(np.sqrt(scm))
519

Philipp Arras's avatar
Philipp Arras committed
520
    @property
Philipp Haim's avatar
Philipp Haim committed
521
    def normalized_amplitudes(self):
522
        return self._a
Philipp Arras's avatar
Philipp Arras committed
523

Philipp Haim's avatar
Philipp Haim committed
524 525 526 527 528 529 530
    @property
    def amplitude(self):
        if len(self._a) > 1:
            s = ('If more than one spectrum is present in the model,',
                 ' no unique set of amplitudes exist because only the',
                 ' relative scale is determined.')
            raise NotImplementedError(s)
Philipp Haim's avatar
Fix  
Philipp Haim committed
531 532
        dom = self._a[0].target
        expand = ContractionOperator(dom, len(dom)-1).adjoint
Philipp Haim's avatar
Philipp Haim committed
533 534
        return self._a[0]*(expand @ self.amplitude_total_offset)

535 536 537
    @property
    def amplitude_total_offset(self):
        return self._azm
Philipp Arras's avatar
Philipp Arras committed
538 539

    @property
540
    def total_fluctuation(self):
541
        """Returns operator which acts on prior or posterior samples"""
542
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
543
            raise NotImplementedError
544
        if len(self._a) == 1:
545
            return self.average_fluctuation(0)
546 547
        q = 1.
        for a in self._a:
Philipp Haim's avatar
Philipp Haim committed
548
            fl = a.fluctuation_amplitude*self._azm.one_over()
Philipp Arras's avatar
Philipp Arras committed
549
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
Philipp Arras's avatar
Formats  
Philipp Arras committed
550
        return (Adder(full(q.target, -1.)) @ q).sqrt()*self._azm
551

Philipp Arras's avatar
Philipp Arras committed
552
    def slice_fluctuation(self, space):
553
        """Returns operator which acts on prior or posterior samples"""
554
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
555
            raise NotImplementedError
556 557
        if space >= len(self._a):
            raise ValueError(f"invalid space specified; got {space!r}")
558
        if len(self._a) == 1:
559
            return self.average_fluctuation(0)
560 561
        q = 1.
        for j in range(len(self._a)):
Philipp Haim's avatar
Philipp Haim committed
562
            fl = self._a[j].fluctuation_amplitude*self._azm.one_over()
563
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
564
                q = q*fl**2
565
            else:
Philipp Arras's avatar
Philipp Arras committed
566
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
Philipp Arras's avatar
Formats  
Philipp Arras committed
567
        return q.sqrt()*self._azm
Philipp Arras's avatar
Philipp Arras committed
568 569

    def average_fluctuation(self, space):
570
        """Returns operator which acts on prior or posterior samples"""
571
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
572
            raise NotImplementedError
573 574
        if space >= len(self._a):
            raise ValueError(f"invalid space specified; got {space!r}")
575
        if len(self._a) == 1:
Philipp Haim's avatar
Philipp Haim committed
576 577
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude
578

579 580
    @staticmethod
    def offset_amplitude_realized(samples):
581 582
        res = 0.
        for s in samples:
Philipp Frank's avatar
fixes  
Philipp Frank committed
583
            res = res + s.mean()**2
584
        return np.sqrt(res/len(samples))
Philipp Arras's avatar
Philipp Arras committed
585

586 587 588 589 590 591 592 593
    @staticmethod
    def total_fluctuation_realized(samples):
        return _total_fluctuation_realized(samples)

    @staticmethod
    def slice_fluctuation_realized(samples, space):
        """Computes slice fluctuations from collection of field (defined in signal
        space) realizations."""
594
        ldom = len(samples[0].domain)
595 596
        if space >= ldom:
            raise ValueError(f"invalid space specified; got {space!r}")
597
        if ldom == 1:
598
            return _total_fluctuation_realized(samples)
Philipp Arras's avatar
Philipp Arras committed
599
        res1, res2 = 0., 0.
600
        for s in samples:
Philipp Frank's avatar
fixes  
Philipp Frank committed
601 602 603 604 605 606 607
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
        res = res1.mean() - res2.mean()
        return np.sqrt(res)

Philipp Arras's avatar
Philipp Arras committed
608
    @staticmethod
609 610 611 612
    def average_fluctuation_realized(samples, space):
        """Computes average fluctuations from collection of field (defined in signal
        space) realizations."""
        ldom = len(samples[0].domain)
613 614
        if space >= ldom:
            raise ValueError(f"invalid space specified; got {space!r}")
615 616 617 618 619 620
        if ldom == 1:
            return _total_fluctuation_realized(samples)
        spaces = ()
        for i in range(ldom):
            if i != space:
                spaces += (i,)
Philipp Arras's avatar
Philipp Arras committed
621 622
        res = 0.
        for s in samples:
623 624 625 626
            r = s.mean(spaces)
            res = res + (r - r.mean())**2
        res = res/len(samples)
        return np.sqrt(res.mean())