getting_started_0.ipynb 17.6 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
11
    "# Code example: Wiener filter"
Philipp Arras's avatar
Philipp Arras committed
12
13
14
15
16
17
18
19
20
21
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
22
    "## Introduction\n",
Philipp Arras's avatar
Philipp Arras committed
23
24
25
26
    "IFT starting point:\n",
    "\n",
    "$$d = Rs+n$$\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
27
    "Typically, $s$ is a continuous field, $d$ a discrete data vector. Particularly, $R$ is not invertible.\n",
Philipp Arras's avatar
Philipp Arras committed
28
29
30
    "\n",
    "IFT aims at **inverting** the above uninvertible problem in the **best possible way** using Bayesian statistics.\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
31
    "NIFTy (Numerical Information Field Theory) is a Python framework in which IFT problems can be tackled easily.\n",
Philipp Arras's avatar
Philipp Arras committed
32
33
34
35
36
    "\n",
    "Main Interfaces:\n",
    "\n",
    "- **Spaces**: Cartesian, 2-Spheres (Healpix, Gauss-Legendre) and their respective harmonic spaces.\n",
    "- **Fields**: Defined on spaces.\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
37
    "- **Operators**: Acting on fields."
Philipp Arras's avatar
Philipp Arras committed
38
39
40
41
42
43
44
45
46
47
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
48
    "## Wiener filter on one-dimensional fields\n",
Philipp Arras's avatar
Philipp Arras committed
49
50
51
52
53
54
55
56
57
    "\n",
    "### Assumptions\n",
    "\n",
    "- $d=Rs+n$, $R$ linear operator.\n",
    "- $\\mathcal P (s) = \\mathcal G (s,S)$, $\\mathcal P (n) = \\mathcal G (n,N)$ where $S, N$ are positive definite matrices.\n",
    "\n",
    "### Posterior\n",
    "The Posterior is given by:\n",
    "\n",
Philipp Arras's avatar
Philipp Arras committed
58
    "$$\\mathcal P (s|d) \\propto P(s,d) = \\mathcal G(d-Rs,N) \\,\\mathcal G(s,S) \\propto \\mathcal G (s-m,D) $$\n",
Philipp Arras's avatar
Philipp Arras committed
59
60
    "\n",
    "where\n",
Philipp Arras's avatar
Philipp Arras committed
61
62
63
    "$$m = Dj$$\n",
    "with\n",
    "$$D = (S^{-1} +R^\\dagger N^{-1} R)^{-1} , \\quad j = R^\\dagger N^{-1} d.$$\n",
Philipp Arras's avatar
Philipp Arras committed
64
65
66
67
68
69
70
71
72
73
74
75
    "\n",
    "Let us implement this in NIFTy!"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
76
    "### In NIFTy\n",
Philipp Arras's avatar
Philipp Arras committed
77
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
78
79
    "- We assume statistical homogeneity and isotropy. Therefore the signal covariance $S$ is diagonal in harmonic space, and is described by a one-dimensional power spectrum, assumed here as $$P(k) = P_0\\,\\left(1+\\left(\\frac{k}{k_0}\\right)^2\\right)^{-\\gamma /2},$$\n",
    "with $P_0 = 0.2, k_0 = 5, \\gamma = 4$.\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
80
    "- $N = 0.2 \\cdot \\mathbb{1}$.\n",
Martin Reinecke's avatar
Martin Reinecke committed
81
82
    "- Number of data points $N_{pix} = 512$.\n",
    "- reconstruction in harmonic space.\n",
Philipp Arras's avatar
Philipp Arras committed
83
    "- Response operator:\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
84
    "$$R = FFT_{\\text{harmonic} \\rightarrow \\text{position}}$$\n"
Philipp Arras's avatar
Philipp Arras committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "N_pixels = 512     # Number of pixels\n",
    "\n",
    "def pow_spec(k):\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
100
101
    "    P0, k0, gamma = [.2, 5, 4]\n",
    "    return P0 / ((1. + (k/k0)**2)**(gamma / 2))"
Philipp Arras's avatar
Philipp Arras committed
102
103
104
105
106
107
108
109
110
111
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
112
    "### Implementation"
Philipp Arras's avatar
Philipp Arras committed
113
114
115
116
117
118
119
120
121
122
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
123
    "#### Import Modules"
Philipp Arras's avatar
Philipp Arras committed
124
125
126
127
128
129
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
Martin Reinecke's avatar
Martin Reinecke committed
130
    "scrolled": true,
Philipp Arras's avatar
Philipp Arras committed
131
132
133
134
135
136
137
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
Martin Reinecke's avatar
Martin Reinecke committed
138
    "import nifty7 as ift\n",
139
    "import matplotlib.pyplot as plt\n",
Philipp Arras's avatar
Philipp Arras committed
140
141
    "plt.rcParams['figure.dpi'] = 100\n",
    "plt.style.use(\"seaborn-notebook\")"
Philipp Arras's avatar
Philipp Arras committed
142
143
144
145
146
147
148
149
150
151
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
152
    "#### Implement Propagator"
Philipp Arras's avatar
Philipp Arras committed
153
154
155
156
157
158
159
160
161
162
163
164
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
165
    "def Curvature(R, N, Sh):\n",
Martin Reinecke's avatar
Martin Reinecke committed
166
    "    IC = ift.GradientNormController(iteration_limit=50000,\n",
167
    "                                    tol_abs_gradnorm=0.1)\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
168
169
    "    # WienerFilterCurvature is (R.adjoint*N.inverse*R + Sh.inverse) plus some handy\n",
    "    # helper methods.\n",
170
    "    return ift.WienerFilterCurvature(R,N,Sh,iteration_controller=IC,iteration_controller_sampling=IC)"
Philipp Arras's avatar
Philipp Arras committed
171
172
173
174
175
176
177
178
179
180
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
181
    "#### Conjugate Gradient Preconditioning\n",
Philipp Arras's avatar
Philipp Arras committed
182
183
    "\n",
    "- $D$ is defined via:\n",
Martin Reinecke's avatar
Martin Reinecke committed
184
    "$$D^{-1} = \\mathcal S_h^{-1} + R^\\dagger N^{-1} R.$$\n",
Philipp Arras's avatar
Philipp Arras committed
185
186
    "In the end, we want to apply $D$ to $j$, i.e. we need the inverse action of $D^{-1}$. This is done numerically (algorithm: *Conjugate Gradient*). \n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
187
    "<!--\n",
Philipp Arras's avatar
Philipp Arras committed
188
189
190
191
192
193
    "- One can define the *condition number* of a non-singular and normal matrix $A$:\n",
    "$$\\kappa (A) := \\frac{|\\lambda_{\\text{max}}|}{|\\lambda_{\\text{min}}|},$$\n",
    "where $\\lambda_{\\text{max}}$ and $\\lambda_{\\text{min}}$ are the largest and smallest eigenvalue of $A$, respectively.\n",
    "\n",
    "- The larger $\\kappa$ the slower Conjugate Gradient.\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
194
    "- By default, conjugate gradient solves: $D^{-1} m = j$ for $m$, where $D^{-1}$ can be badly conditioned. If one knows a non-singular matrix $T$ for which $TD^{-1}$ is better conditioned, one can solve the equivalent problem:\n",
Philipp Arras's avatar
Philipp Arras committed
195
196
197
198
199
    "$$\\tilde A m = \\tilde j,$$\n",
    "where $\\tilde A = T D^{-1}$ and $\\tilde j = Tj$.\n",
    "\n",
    "- In our case $S^{-1}$ is responsible for the bad conditioning of $D$ depending on the chosen power spectrum. Thus, we choose\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
200
201
    "$$T = \\mathcal F^\\dagger S_h^{-1} \\mathcal F.$$\n",
    "-->"
Philipp Arras's avatar
Philipp Arras committed
202
203
204
205
206
207
208
209
210
211
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
212
    "#### Generate Mock data\n",
Philipp Arras's avatar
Philipp Arras committed
213
214
215
216
217
218
219
220
    "\n",
    "- Generate a field $s$ and $n$ with given covariances.\n",
    "- Calculate $d$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Martin Reinecke's avatar
Martin Reinecke committed
221
222
223
   "metadata": {
    "scrolled": true
   },
Philipp Arras's avatar
Philipp Arras committed
224
225
   "outputs": [],
   "source": [
226
227
228
    "s_space = ift.RGSpace(N_pixels)\n",
    "h_space = s_space.get_default_codomain()\n",
    "HT = ift.HarmonicTransformOperator(h_space, target=s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
229
230
    "\n",
    "# Operators\n",
231
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
Philipp Arras's avatar
Philipp Arras committed
232
    "R = HT # @ ift.create_harmonic_smoothing_operator((h_space,), 0, 0.02)\n",
Philipp Arras's avatar
Philipp Arras committed
233
234
    "\n",
    "# Fields and data\n",
Philipp Arras's avatar
Philipp Arras committed
235
    "sh = Sh.draw_sample_with_dtype(dtype=np.float64)\n",
236
    "noiseless_data=R(sh)\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
237
    "noise_amplitude = np.sqrt(0.2)\n",
238
    "N = ift.ScalingOperator(s_space, noise_amplitude**2)\n",
239
240
    "\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
241
    "                          std=noise_amplitude, mean=0)\n",
242
243
    "d = noiseless_data + n\n",
    "j = R.adjoint_times(N.inverse_times(d))\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
244
245
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse"
Philipp Arras's avatar
Philipp Arras committed
246
247
248
249
250
251
252
253
254
255
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
256
    "#### Run Wiener Filter"
Philipp Arras's avatar
Philipp Arras committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "m = D(j)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
280
    "#### Results"
Philipp Arras's avatar
Philipp Arras committed
281
282
283
284
285
286
287
288
289
290
291
292
293
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "# Get signal data and reconstruction data\n",
Martin Reinecke's avatar
Martin Reinecke committed
294
295
296
    "s_data = HT(sh).val\n",
    "m_data = HT(m).val\n",
    "d_data = d.val\n",
Philipp Arras's avatar
Philipp Arras committed
297
    "\n",
Philipp Arras's avatar
Philipp Arras committed
298
    "plt.plot(s_data, 'r', label=\"Signal\", linewidth=2)\n",
Martin Reinecke's avatar
Martin Reinecke committed
299
    "plt.plot(d_data, 'k.', label=\"Data\")\n",
Philipp Arras's avatar
Philipp Arras committed
300
    "plt.plot(m_data, 'k', label=\"Reconstruction\",linewidth=2)\n",
Philipp Arras's avatar
Philipp Arras committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    "plt.title(\"Reconstruction\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [],
   "source": [
Philipp Arras's avatar
Philipp Arras committed
316
    "plt.plot(s_data - s_data, 'r', label=\"Signal\", linewidth=2)\n",
Martin Reinecke's avatar
Martin Reinecke committed
317
    "plt.plot(d_data - s_data, 'k.', label=\"Data\")\n",
Philipp Arras's avatar
Philipp Arras committed
318
    "plt.plot(m_data - s_data, 'k', label=\"Reconstruction\",linewidth=2)\n",
319
    "plt.axhspan(-noise_amplitude,noise_amplitude, facecolor='0.9', alpha=.5)\n",
Philipp Arras's avatar
Philipp Arras committed
320
321
322
323
324
325
326
327
328
329
330
331
332
    "plt.title(\"Residuals\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
333
    "#### Power Spectrum"
Philipp Arras's avatar
Philipp Arras committed
334
335
336
337
338
339
340
341
342
343
344
345
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
346
347
    "s_power_data = ift.power_analyze(sh).val\n",
    "m_power_data = ift.power_analyze(m).val\n",
Philipp Arras's avatar
Philipp Arras committed
348
349
350
351
352
    "plt.loglog()\n",
    "plt.xlim(1, int(N_pixels/2))\n",
    "ymin = min(m_power_data)\n",
    "plt.ylim(ymin, 1)\n",
    "xs = np.arange(1,int(N_pixels/2),.1)\n",
Martin Reinecke's avatar
Martin Reinecke committed
353
354
355
    "plt.plot(xs, pow_spec(xs), label=\"True Power Spectrum\", color='k',alpha=0.5)\n",
    "plt.plot(s_power_data, 'r', label=\"Signal\")\n",
    "plt.plot(m_power_data, 'k', label=\"Reconstruction\")\n",
356
357
    "plt.axhline(noise_amplitude**2 / N_pixels, color=\"k\", linestyle='--', label=\"Noise level\", alpha=.5)\n",
    "plt.axhspan(noise_amplitude**2 / N_pixels, ymin, facecolor='0.9', alpha=.5)\n",
Philipp Arras's avatar
Philipp Arras committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    "plt.title(\"Power Spectrum\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Wiener Filter on Incomplete Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "# Operators\n",
385
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
386
    "N = ift.ScalingOperator(s_space, noise_amplitude**2)\n",
Philipp Arras's avatar
Philipp Arras committed
387
388
389
    "# R is defined below\n",
    "\n",
    "# Fields\n",
Philipp Arras's avatar
Philipp Arras committed
390
    "sh = Sh.draw_sample_with_dtype(dtype=np.float64)\n",
391
392
393
    "s = HT(sh)\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
    "                      std=noise_amplitude, mean=0)"
Philipp Arras's avatar
Philipp Arras committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Partially Lose Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "l = int(N_pixels * 0.2)\n",
418
    "h = int(N_pixels * 0.2 * 2)\n",
Philipp Arras's avatar
Philipp Arras committed
419
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
420
421
    "mask = np.full(s_space.shape, 1.)\n",
    "mask[l:h] = 0\n",
Martin Reinecke's avatar
Martin Reinecke committed
422
    "mask = ift.Field.from_raw(s_space, mask)\n",
Philipp Arras's avatar
Philipp Arras committed
423
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
424
    "R = ift.DiagonalOperator(mask)(HT)\n",
Martin Reinecke's avatar
Martin Reinecke committed
425
    "n = n.val_rw()\n",
Martin Reinecke's avatar
Martin Reinecke committed
426
    "n[l:h] = 0\n",
Martin Reinecke's avatar
Martin Reinecke committed
427
    "n = ift.Field.from_raw(s_space, n)\n",
Philipp Arras's avatar
Philipp Arras committed
428
    "\n",
429
    "d = R(sh) + n"
Philipp Arras's avatar
Philipp Arras committed
430
431
432
433
434
435
436
437
438
439
440
441
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
442
443
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse\n",
Philipp Arras's avatar
Philipp Arras committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "m = D(j)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Compute Uncertainty\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
463
    "scrolled": true
Philipp Arras's avatar
Philipp Arras committed
464
465
466
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
467
    "m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 200, np.float64)"
Philipp Arras's avatar
Philipp Arras committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Get data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "# Get signal data and reconstruction data\n",
Martin Reinecke's avatar
Martin Reinecke committed
492
493
494
    "s_data = s.val\n",
    "m_data = HT(m).val\n",
    "m_var_data = m_var.val\n",
Martin Reinecke's avatar
Martin Reinecke committed
495
    "uncertainty = np.sqrt(m_var_data)\n",
Martin Reinecke's avatar
Martin Reinecke committed
496
    "d_data = d.val_rw()\n",
Philipp Arras's avatar
Philipp Arras committed
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    "\n",
    "# Set lost data to NaN for proper plotting\n",
    "d_data[d_data == 0] = np.nan"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
512
513
    "plt.axvspan(l, h, facecolor='0.8',alpha=0.5)\n",
    "plt.fill_between(range(N_pixels), m_data - uncertainty, m_data + uncertainty, facecolor='0.5', alpha=0.5)\n",
Philipp Arras's avatar
Philipp Arras committed
514
    "plt.plot(s_data, 'r', label=\"Signal\", alpha=1, linewidth=2)\n",
Martin Reinecke's avatar
Martin Reinecke committed
515
    "plt.plot(d_data, 'k.', label=\"Data\")\n",
Philipp Arras's avatar
Philipp Arras committed
516
    "plt.plot(m_data, 'k', label=\"Reconstruction\", linewidth=2)\n",
Philipp Arras's avatar
Philipp Arras committed
517
518
519
520
521
522
523
524
525
526
527
528
    "plt.title(\"Reconstruction of incomplete data\")\n",
    "plt.legend()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
529
    "## Wiener filter on two-dimensional field"
Philipp Arras's avatar
Philipp Arras committed
530
531
532
533
534
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Martin Reinecke's avatar
Martin Reinecke committed
535
   "metadata": {},
Philipp Arras's avatar
Philipp Arras committed
536
537
538
   "outputs": [],
   "source": [
    "N_pixels = 256      # Number of pixels\n",
Martin Reinecke's avatar
Martin Reinecke committed
539
    "sigma2 = 2.         # Noise variance\n",
Philipp Arras's avatar
Philipp Arras committed
540
541
    "\n",
    "def pow_spec(k):\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
542
    "    P0, k0, gamma = [.2, 2, 4]\n",
Martin Reinecke's avatar
Martin Reinecke committed
543
    "    return P0 * (1. + (k/k0)**2)**(-gamma/2)\n",
Philipp Arras's avatar
Philipp Arras committed
544
    "\n",
545
    "s_space = ift.RGSpace([N_pixels, N_pixels])"
Philipp Arras's avatar
Philipp Arras committed
546
547
548
549
550
551
552
553
554
555
556
557
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
558
    "h_space = s_space.get_default_codomain()\n",
Martin Reinecke's avatar
Martin Reinecke committed
559
    "HT = ift.HarmonicTransformOperator(h_space,s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
560
561
    "\n",
    "# Operators\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
562
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
563
    "N = ift.ScalingOperator(s_space, sigma2)\n",
Philipp Arras's avatar
Philipp Arras committed
564
565
    "\n",
    "# Fields and data\n",
Philipp Arras's avatar
Philipp Arras committed
566
    "sh = Sh.draw_sample_with_dtype(dtype=np.float64)\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
567
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
Philipp Arras's avatar
Philipp Arras committed
568
569
570
571
    "                      std=np.sqrt(sigma2), mean=0)\n",
    "\n",
    "# Lose some data\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
572
573
    "l = int(N_pixels * 0.33)\n",
    "h = int(N_pixels * 0.33 * 2)\n",
Philipp Arras's avatar
Philipp Arras committed
574
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
575
576
    "mask = np.full(s_space.shape, 1.)\n",
    "mask[l:h,l:h] = 0.\n",
Martin Reinecke's avatar
Martin Reinecke committed
577
    "mask = ift.Field.from_raw(s_space, mask)\n",
Philipp Arras's avatar
Philipp Arras committed
578
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
579
    "R = ift.DiagonalOperator(mask)(HT)\n",
Martin Reinecke's avatar
Martin Reinecke committed
580
    "n = n.val_rw()\n",
Martin Reinecke's avatar
Martin Reinecke committed
581
    "n[l:h, l:h] = 0\n",
Martin Reinecke's avatar
Martin Reinecke committed
582
    "n = ift.Field.from_raw(s_space, n)\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
583
584
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse\n",
Philipp Arras's avatar
Philipp Arras committed
585
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
586
    "d = R(sh) + n\n",
Philipp Arras's avatar
Philipp Arras committed
587
588
589
590
591
592
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "\n",
    "# Run Wiener filter\n",
    "m = D(j)\n",
    "\n",
    "# Uncertainty\n",
Martin Reinecke's avatar
Martin Reinecke committed
593
    "m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 20, np.float64)\n",
Philipp Arras's avatar
Philipp Arras committed
594
595
    "\n",
    "# Get data\n",
Martin Reinecke's avatar
Martin Reinecke committed
596
597
598
599
    "s_data = HT(sh).val\n",
    "m_data = HT(m).val\n",
    "m_var_data = m_var.val\n",
    "d_data = d.val\n",
Philipp Arras's avatar
Philipp Arras committed
600
601
602
603
604
605
606
607
608
609
610
611
612
    "uncertainty = np.sqrt(np.abs(m_var_data))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Philipp Arras's avatar
Philipp Arras committed
613
    "cmap = ['magma', 'inferno', 'plasma', 'viridis'][1]\n",
Philipp Arras's avatar
Philipp Arras committed
614
615
616
617
    "\n",
    "mi = np.min(s_data)\n",
    "ma = np.max(s_data)\n",
    "\n",
Philipp Arras's avatar
Philipp Arras committed
618
    "fig, axes = plt.subplots(1, 2)\n",
Philipp Arras's avatar
Philipp Arras committed
619
620
621
622
623
    "\n",
    "data = [s_data, d_data]\n",
    "caption = [\"Signal\", \"Data\"]\n",
    "\n",
    "for ax in axes.flat:\n",
Philipp Arras's avatar
Philipp Arras committed
624
    "    im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cmap, vmin=mi,\n",
Philipp Arras's avatar
Philipp Arras committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    "                   vmax=ma)\n",
    "    ax.set_title(caption.pop(0))\n",
    "\n",
    "fig.subplots_adjust(right=0.8)\n",
    "cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])\n",
    "fig.colorbar(im, cax=cbar_ax)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "mi = np.min(s_data)\n",
    "ma = np.max(s_data)\n",
    "\n",
Philipp Arras's avatar
Philipp Arras committed
646
    "fig, axes = plt.subplots(3, 2, figsize=(10, 15))\n",
Philipp Arras's avatar
Philipp Arras committed
647
    "sample = HT(curv.draw_sample(from_inverse=True)+m).val\n",
Martin Reinecke's avatar
Martin Reinecke committed
648
    "post_mean = (m_mean + HT(m)).val\n",
Philipp Arras's avatar
Philipp Arras committed
649
    "\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
650
651
    "data = [s_data, m_data, post_mean, sample, s_data - m_data, uncertainty]\n",
    "caption = [\"Signal\", \"Reconstruction\", \"Posterior mean\", \"Sample\", \"Residuals\", \"Uncertainty Map\"]\n",
Philipp Arras's avatar
Philipp Arras committed
652
653
    "\n",
    "for ax in axes.flat:\n",
Philipp Arras's avatar
Philipp Arras committed
654
    "    im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cmap, vmin=mi, vmax=ma)\n",
Philipp Arras's avatar
Philipp Arras committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
    "    ax.set_title(caption.pop(0))\n",
    "\n",
    "fig.subplots_adjust(right=0.8)\n",
    "cbar_ax = fig.add_axes([.85, 0.15, 0.05, 0.7])\n",
    "fig.colorbar(im, cax=cbar_ax)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Is the uncertainty map reliable?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
683
    "precise = (np.abs(s_data-m_data) < uncertainty)\n",
Philipp Arras's avatar
Philipp Arras committed
684
685
686
    "print(\"Error within uncertainty map bounds: \" + str(np.sum(precise) * 100 / N_pixels**2) + \"%\")\n",
    "\n",
    "plt.imshow(precise.astype(float), cmap=\"brg\")\n",
Martin Reinecke's avatar
Martin Reinecke committed
687
    "plt.colorbar()"
Philipp Arras's avatar
Philipp Arras committed
688
689
690
691
692
693
   ]
  }
 ],
 "metadata": {
  "celltoolbar": "Slideshow",
  "kernelspec": {
694
   "display_name": "Python 3",
Philipp Arras's avatar
Philipp Arras committed
695
   "language": "python",
696
   "name": "python3"
Philipp Arras's avatar
Philipp Arras committed
697
698
699
700
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
701
    "version": 3
Philipp Arras's avatar
Philipp Arras committed
702
703
704
705
706
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
707
   "pygments_lexer": "ipython3",
Philipp Arras's avatar
Philipp Arras committed
708
   "version": "3.9.2"
Philipp Arras's avatar
Philipp Arras committed
709
710
711
712
713
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}