correlated_fields.py 13 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19 20
import numpy as np
from numpy.testing import assert_allclose
21

Philipp Arras's avatar
Philipp Arras committed
22
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
23 24
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
Philipp Arras's avatar
Philipp Arras committed
25
from ..extra import check_jacobian_consistency, consistency_check
26
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
27
from ..multi_domain import MultiDomain
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.adder import Adder
29
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
31
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
32
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.linear_operator import LinearOperator
34
from ..operators.diagonal_operator import DiagonalOperator
Philipp Arras's avatar
Philipp Arras committed
35 36
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
37 38 39
from ..operators.value_inserter import ValueInserter
from ..sugar import from_global_data, from_random, full, makeDomain

40
#FIXME for all space operators, check if it is valid first (e.g. parse_space())
Philipp Arras's avatar
Philipp Arras committed
41 42 43

def _lognormal_moment_matching(mean, sig, key):
    mean, sig, key = float(mean), float(sig), str(key)
Philipp Haim's avatar
Philipp Haim committed
44
    assert mean > 0
Philipp Arras's avatar
Philipp Arras committed
45 46 47 48 49 50 51
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
    return _normal(logmean, logsig, key).exp()


def _normal(mean, sig, key):
Philipp Haim's avatar
Philipp Haim committed
52
    assert sig > 0
Philipp Arras's avatar
Philipp Arras committed
53 54 55 56
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Frank's avatar
Philipp Frank committed
57
class _SlopeRemover(EndomorphicOperator):
58
    def __init__(self, domain, cooridinates, space = 0):
Philipp Frank's avatar
Philipp Frank committed
59
        self._domain = makeDomain(domain)
60
        self._sc = cooridinates / float(cooridinates[-1])
Philipp Arras's avatar
Philipp Arras committed
61

62 63
        self._space = space
        self._last = (slice(None),)*self._domain.axes[space][0] + (-1,)
Philipp Frank's avatar
Philipp Frank committed
64
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
65

Philipp Frank's avatar
Philipp Frank committed
66 67 68 69
    def apply(self,x,mode):
        self._check_input(x,mode)
        x = x.to_global_data()
        if mode == self.TIMES:
70
            res = x - x[self._last] * self._sc
Philipp Frank's avatar
Philipp Frank committed
71
        else:
72
            #NOTE Why not x.copy()?
Philipp Frank's avatar
Philipp Frank committed
73
            res = np.zeros(x.shape,dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
74
            res += x
75
            res[self._last] -= (x*self._sc).sum(axis = self._space)
Philipp Frank's avatar
Philipp Frank committed
76 77
        return from_global_data(self._tgt(mode),res)

78
def _make_slope_Operator(smooth,loglogavgslope, space = 0):
Philipp Frank's avatar
Philipp Frank committed
79
    tg = smooth.target
80
    logkl = _log_k_lengths(tg[space])
Philipp Frank's avatar
Philipp Frank committed
81 82
    logkl -= logkl[0]
    logkl = np.insert(logkl, 0, 0)
83
    noslope = _SlopeRemover(tg,logkl, space) @ smooth
Philipp Frank's avatar
Philipp Frank committed
84 85 86
    # FIXME Move to tests
    consistency_check(_SlopeRemover(tg,logkl))

87 88 89
    expander = ContractionOperator(tg, spaces = space).adjoint
    _t = DiagonalOperator(from_global_data(tg, logkl), tg, spaces = space)
    return _t @ expander @ loglogavgslope + noslope
Philipp Arras's avatar
Philipp Arras committed
90 91 92 93 94

def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])

class _TwoLogIntegrations(LinearOperator):
95
    def __init__(self, target, space = 0):
Philipp Arras's avatar
Philipp Arras committed
96
        self._target = makeDomain(target)
97 98 99 100 101
        assert isinstance(self.target[space], PowerSpace)
        dom = list(self._target)
        dom[space] = UnstructuredDomain((2, self.target[space].shape[0]-2))
        self._domain = makeDomain(dom)
        self._space = space
Philipp Arras's avatar
Philipp Arras committed
102
        self._capability = self.TIMES | self.ADJOINT_TIMES
103
        logk_lengths = _log_k_lengths(self._target[space])
Philipp Arras's avatar
Philipp Arras committed
104 105 106 107
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
108 109 110 111 112 113 114 115 116

        #Maybe make class properties
        axis = self._target.axes[self._space][0]
        sl = (slice(None),)*axis
        first = sl + (0,)
        second = sl + (1,)
        from_third = sl + (slice(2,None),)
        no_border = sl + (slice(1,-1),)
        reverse = sl + (slice(None,None,-1),)
Philipp Arras's avatar
Philipp Arras committed
117 118 119
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
120 121 122 123 124
            res[first] = 0
            res[second] = 0
            res[from_third] = np.cumsum(x[second], axis = axis)
            res[from_third] = (res[from_third] + res[no_border])/2*self._logvol + x[first]
            res[from_third] = np.cumsum(res[from_third], axis = axis)
Philipp Arras's avatar
Philipp Arras committed
125 126 127
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
128 129 130 131 132 133
            x[from_third] = np.cumsum(x[from_third][reverse], axis = axis)[reverse]
            res[first] += x[from_third]
            x[from_third] *= self._logvol/2.
            x[no_border] += x[from_third]
            res[second] += np.cumsum(x[from_third][reverse], axis = axis)[reverse]
        return from_global_data(self._tgt(mode), res)
Philipp Arras's avatar
Philipp Arras committed
134 135 136 137 138 139 140 141 142 143 144 145


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        # TODO Does not work on sphere yet
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)
Philipp Arras's avatar
Philipp Arras committed
146 147
        # FIXME Move to tests
        consistency_check(self._specsum)
Philipp Arras's avatar
Philipp Arras committed
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


class CorrelatedFieldMaker:
    def __init__(self):
        self._amplitudes = []

    def add_fluctuations_from_ops(self, target, fluctuations, flexibility,
173
                                  asperity, loglogavgslope, key, space = 0):
Philipp Arras's avatar
Philipp Arras committed
174 175 176 177 178 179 180 181 182 183 184
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
185
        assert isinstance(target[space], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
186

187
        twolog = _TwoLogIntegrations(target, space)
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        dt = twolog._logvol
        sl = (slice(None),)*target.axes[space][0]
        first = sl + (0,)
        second = sl + (1,)
        expander = ContractionOperator(twolog.domain, spaces = space).adjoint
        
        sqrt_t = np.zeros(twolog.domain.shape)
        sqrt_t[first] = sqrt_t[second] = np.sqrt(dt)
        sqrt_t = from_global_data(twolog.domain, sqrt_t)
        sqrt_t = DiagonalOperator(sqrt_t, twolog.domain, spaces = space)
        sigmasq = sqrt_t @ expander @ flexibility

        #FIXME apply dist in asperity target domain, as it is smaller
        #dist = np.zeros(asperity.target.shape)
        #dist[first] = 1.
        #dist = from_global_data(asperity.target, dist)
        #dist = DiagonalOperator(dist, asperity.target, spaces = space)
        #scale = sigmasq*(Adder(shift) @ expander @ dist @ asperity).sqrt()
Philipp Arras's avatar
Philipp Arras committed
206
        dist = np.zeros(twolog.domain.shape)
207
        dist += 1.
Philipp Arras's avatar
Philipp Arras committed
208
        dist = from_global_data(twolog.domain, dist)
209
        dist = DiagonalOperator(dist, twolog.domain, spaces = space)
Philipp Arras's avatar
Philipp Arras committed
210

211 212 213 214
        shift = np.ones(twolog.domain.shape)
        shift[first] = dt**2/12.
        shift = from_global_data(twolog.domain, shift)
        scale = sigmasq*(Adder(shift) @ dist @ expander @ asperity).sqrt()
Philipp Arras's avatar
Philipp Arras committed
215 216

        smooth = twolog @ (scale*ducktape(scale.target, None, key))
Philipp Frank's avatar
Philipp Frank committed
217
        smoothslope = _make_slope_Operator(smooth,loglogavgslope)
Philipp Frank's avatar
Philipp Frank committed
218
        #smoothslope = smooth
Philipp Frank's avatar
Philipp Frank committed
219
        
Philipp Arras's avatar
Philipp Arras committed
220 221 222
        # move to tests
        assert_allclose(
            smooth(from_random('normal', smooth.domain)).val[0:2], 0)
Philipp Arras's avatar
Philipp Arras committed
223
        consistency_check(twolog)
Philipp Arras's avatar
Philipp Arras committed
224 225
        check_jacobian_consistency(smooth, from_random('normal',
                                                       smooth.domain))
Philipp Arras's avatar
Philipp Arras committed
226 227
        check_jacobian_consistency(smoothslope,
                                   from_random('normal', smoothslope.domain))
Philipp Arras's avatar
Philipp Arras committed
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        # end move to tests

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
        ampl = adder @ ((expander @ fluctuations)*normal_ampl)

        # Move to tests
        # FIXME This test fails but it is not relevant for the final result
        # assert_allclose(
        #     normal_ampl(from_random('normal', normal_ampl.domain)).val[0], 1)
        assert_allclose(ampl(from_random('normal', ampl.domain)).val[0], vol)
Philipp Arras's avatar
Philipp Arras committed
245 246
        op = _Normalization(target)
        check_jacobian_consistency(op, from_random('normal', op.domain))
Philipp Arras's avatar
Philipp Arras committed
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        # End move to tests

        self._amplitudes.append(ampl)

    def add_fluctuations(self, target, fluctuations_mean, fluctuations_stddev,
                         flexibility_mean, flexibility_stddev, asperity_mean,
                         asperity_stddev, loglogavgslope_mean,
                         loglogavgslope_stddev, prefix):
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
272
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
                        prefix + 'loglogavgslope')
        self.add_fluctuations_from_ops(target, fluct, flex, asp, avgsl,
                                       prefix + 'spectrum')

    def finalize_from_op(self, zeromode):
        raise NotImplementedError

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
                 prefix,
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
            offset = float(offset)
        hspace = makeDomain(
            [dd.target[0].harmonic_partner for dd in self._amplitudes])

        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ azm

        ht = HarmonicTransformOperator(hspace, space=0)
        pd = PowerDistributor(hspace, self._amplitudes[0].target[0], 0)
        for i in range(1, len(self._amplitudes)):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht
            pd = pd @ PowerDistributor(
                pd.domain, self._amplitudes[i].target[0], space=i)

        spaces = tuple(range(len(self._amplitudes)))
        a = ContractionOperator(pd.domain,
                                spaces[1:]).adjoint(self._amplitudes[0])
        for i in range(1, len(self._amplitudes)):
            a = a*(ContractionOperator(pd.domain, spaces[:i] + spaces[
                (i + 1):]).adjoint(self._amplitudes[i]))

        A = pd @ a
        return ht(azm*A*ducktape(hspace, None, prefix + 'xi'))

    @property
    def amplitudes(self):
        return self._amplitudes