energy_operators.py 12 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
19
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
20
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
from ..field import Field
23
from ..multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
24
from ..linearization import Linearization
Philipp Arras's avatar
Philipp Arras committed
25
26
from ..sugar import makeDomain, makeOp
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
28
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
29
from .sandwich_operator import SandwichOperator
Martin Reinecke's avatar
Martin Reinecke committed
30
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
31
32
33


class EnergyOperator(Operator):
Philipp Arras's avatar
Philipp Arras committed
34
    """Operator which has a scalar domain as target domain.
35

Martin Reinecke's avatar
Martin Reinecke committed
36
    It is intended as an objective function for field inference.
37

Philipp Arras's avatar
Philipp Arras committed
38
39
40
    Examples
    --------
     - Information Hamiltonian, i.e. negative-log-probabilities.
Martin Reinecke's avatar
Martin Reinecke committed
41
     - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler
Philipp Arras's avatar
Philipp Arras committed
42
       divergence.
43
    """
Martin Reinecke's avatar
Martin Reinecke committed
44
45
46
47
    _target = DomainTuple.scalar_domain()


class SquaredNormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
48
    """Computes the L2-norm of the output of an operator.
49

Philipp Arras's avatar
Philipp Arras committed
50
51
52
    Parameters
    ----------
    domain : Domain, DomainTuple or tuple of Domain
53
        Domain of the operator in which the L2-norm shall be computed.
Martin Reinecke's avatar
Martin Reinecke committed
54
    """
Philipp Arras's avatar
Philipp Arras committed
55

Martin Reinecke's avatar
Martin Reinecke committed
56
57
58
59
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
60
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
61
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
62
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
63
            jac = VdotOperator(2*x.val)(x.jac)
64
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
65
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
66
67
68


class QuadraticFormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
69
    """Computes the L2-norm of a Field or MultiField with respect to a
70
    specific kernel given by `endo`.
Philipp Arras's avatar
Philipp Arras committed
71
72
73

    .. math ::
        E(f) = \\frac12 f^\\dagger \\text{endo}(f)
74
75
76

    Parameters
    ----------
Philipp Arras's avatar
Philipp Arras committed
77
    endo : EndomorphicOperator
78
         Kernel of the quadratic form
Martin Reinecke's avatar
Martin Reinecke committed
79
    """
Philipp Arras's avatar
Philipp Arras committed
80
81

    def __init__(self, endo):
Martin Reinecke's avatar
Martin Reinecke committed
82
        from .endomorphic_operator import EndomorphicOperator
Philipp Arras's avatar
Philipp Arras committed
83
        if not isinstance(endo, EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
84
            raise TypeError("op must be an EndomorphicOperator")
Philipp Arras's avatar
Philipp Arras committed
85
86
        self._op = endo
        self._domain = endo.domain
Martin Reinecke's avatar
Martin Reinecke committed
87
88

    def apply(self, x):
89
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
90
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
91
92
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
93
            val = Field.scalar(0.5*x.val.vdot(t1))
94
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
95
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
96
97
98


class GaussianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
99
    """Computes a negative-log Gaussian.
100

Philipp Arras's avatar
Philipp Arras committed
101
    Represents up to constants in :math:`m`:
Martin Reinecke's avatar
Martin Reinecke committed
102

Philipp Arras's avatar
Philipp Arras committed
103
104
    .. math ::
        E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m),
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
105

Philipp Arras's avatar
Philipp Arras committed
106
107
    an information energy for a Gaussian distribution with mean m and
    covariance D.
108

Philipp Arras's avatar
Philipp Arras committed
109
110
111
112
113
114
    Parameters
    ----------
    mean : Field
        Mean of the Gaussian. Default is 0.
    covariance : LinearOperator
        Covariance of the Gaussian. Default is the identity operator.
Philipp Arras's avatar
Fixup    
Philipp Arras committed
115
    domain : Domain, DomainTuple, tuple of Domain or MultiDomain
Philipp Arras's avatar
Philipp Arras committed
116
117
118
119
120
121
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified

    Note
    ----
    At least one of the arguments has to be provided.
Martin Reinecke's avatar
Martin Reinecke committed
122
    """
Martin Reinecke's avatar
Martin Reinecke committed
123

Martin Reinecke's avatar
Martin Reinecke committed
124
    def __init__(self, mean=None, covariance=None, domain=None):
Philipp Arras's avatar
Philipp Arras committed
125
        if mean is not None and not isinstance(mean, Field):
126
127
            if not isinstance(mean, MultiField):
                raise TypeError
Philipp Arras's avatar
Philipp Arras committed
128
129
130
131
        if covariance is not None and not isinstance(covariance,
                                                     LinearOperator):
            raise TypeError

Martin Reinecke's avatar
Martin Reinecke committed
132
133
134
135
136
137
138
139
140
141
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
        if covariance is not None:
            self._checkEquivalence(covariance.domain)
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
Martin Reinecke's avatar
Martin Reinecke committed
142
143
144
145
        if covariance is None:
            self._op = SquaredNormOperator(self._domain).scale(0.5)
        else:
            self._op = QuadraticFormOperator(covariance.inverse)
Martin Reinecke's avatar
Martin Reinecke committed
146
147
148
        self._icov = None if covariance is None else covariance.inverse

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
149
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
150
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
151
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
152
        else:
Philipp Arras's avatar
Philipp Arras committed
153
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
154
155
156
                raise ValueError("domain mismatch")

    def apply(self, x):
157
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
158
        residual = x if self._mean is None else x - self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
159
        res = self._op(residual).real
160
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
161
162
163
164
165
166
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
167
168
    """Computes likelihood Hamiltonians of expected count field constrained by
    Poissonian count data.
169

Philipp Arras's avatar
Philipp Arras committed
170
    Represents up to an f-independent term :math:`log(d!)`:
171

Philipp Arras's avatar
Philipp Arras committed
172
173
    .. math ::
        E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f),
174

Philipp Arras's avatar
Philipp Arras committed
175
    where f is a :class:`Field` in data space with the expectation values for
Martin Reinecke's avatar
Martin Reinecke committed
176
    the counts.
Philipp Arras's avatar
Philipp Arras committed
177
178
179
180
181
182

    Parameters
    ----------
    d : Field
        Data field with counts. Needs to have integer dtype and all field
        values need to be non-negative.
Martin Reinecke's avatar
Martin Reinecke committed
183
    """
Philipp Arras's avatar
Philipp Arras committed
184

185
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
186
187
188
189
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
        if np.any(d.local_data < 0):
            raise ValueError
190
191
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
192
193

    def apply(self, x):
194
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
195
196
        res = x.sum() - x.log().vdot(self._d)
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
197
            return Field.scalar(res)
198
199
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
200
201
202
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

203

204
class InverseGammaLikelihood(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
205
    """Computes the negative log-likelihood of the inverse gamma distribution.
206
207
208

    It negative log-pdf(x) is given by

Martin Reinecke's avatar
Martin Reinecke committed
209
210
211
212
213
214
215
    .. math ::

        \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i

    This is the likelihood for the variance :math:`x=S_k` given data
    :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have
    the covariance :math:`S_k`.
216
217
218
219
220
221
222

    Parameters
    ----------
    beta : Field
        beta parameter of the inverse gamma distribution
    alpha : Scalar, Field, optional
        alpha parameter of the inverse gamma distribution
223
    """
Philipp Arras's avatar
Philipp Arras committed
224

225
226
    def __init__(self, beta, alpha=-0.5):
        if not isinstance(beta, Field):
Philipp Arras's avatar
Philipp Arras committed
227
            raise TypeError
228
229
        self._beta = beta
        if np.isscalar(alpha):
Martin Reinecke's avatar
Martin Reinecke committed
230
231
            alpha = Field.from_local_data(
                beta.domain, np.full(beta.local_data.shape, alpha))
232
233
234
235
        elif not isinstance(alpha, Field):
            raise TypeError
        self._alphap1 = alpha+1
        self._domain = DomainTuple.make(beta.domain)
236
237

    def apply(self, x):
238
        self._check_input(x)
239
        res = x.log().vdot(self._alphap1) + (1./x).vdot(self._beta)
240
241
        if not isinstance(x, Linearization):
            return Field.scalar(res)
242
243
        if not x.want_metric:
            return res
244
        metric = SandwichOperator.make(x.jac, makeOp(self._alphap1/(x.val**2)))
245
246
247
        return res.add_metric(metric)


Martin Reinecke's avatar
Martin Reinecke committed
248
class BernoulliEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
249
    """Computes likelihood energy of expected event frequency constrained by
250
251
    event data.

Philipp Arras's avatar
Philipp Arras committed
252
253
254
255
256
257
258
    .. math ::
        E(f) = -\\log \\text{Bernoulli}(d|f)
             = -d^\\dagger \\log f  - (1-d)^\\dagger \\log(1-f),

    where f is a field defined on `d.domain` with the expected
    frequencies of events.

259
260
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
261
    d : Field
Philipp Arras's avatar
Philipp Arras committed
262
        Data field with events (1) or non-events (0).
Martin Reinecke's avatar
Martin Reinecke committed
263
    """
Philipp Arras's avatar
Philipp Arras committed
264

265
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
266
267
268
269
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
        if not np.all(np.logical_or(d.local_data == 0, d.local_data == 1)):
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
270
        self._d = d
271
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
272
273

    def apply(self, x):
274
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
275
        v = -(x.log().vdot(self._d) + (1. - x).log().vdot(1. - self._d))
Martin Reinecke's avatar
Martin Reinecke committed
276
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
277
            return Field.scalar(v)
278
279
        if not x.want_metric:
            return v
Philipp Arras's avatar
Philipp Arras committed
280
        met = makeOp(1./(x.val*(1. - x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
281
282
283
284
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


285
class StandardHamiltonian(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
286
287
    """Computes an information Hamiltonian in its standard form, i.e. with the
    prior being a Gaussian with unit covariance.
288

Philipp Arras's avatar
Philipp Arras committed
289
    Let the likelihood energy be :math:`E_{lh}`. Then this operator computes:
290

Philipp Arras's avatar
Philipp Arras committed
291
292
    .. math ::
         H(f) = 0.5 f^\\dagger f + E_{lh}(f):
293

Martin Reinecke's avatar
Martin Reinecke committed
294
    Other field priors can be represented via transformations of a white
295
296
    Gaussian field into a field with the desired prior probability structure.

Martin Reinecke's avatar
Martin Reinecke committed
297
    By implementing prior information this way, the field prior is represented
298
299
300
    by a generative model, from which NIFTy can draw samples and infer a field
    using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method.

Philipp Arras's avatar
Philipp Arras committed
301
302
303
304
305
306
307
308
    The metric of this operator can be used as covariance for drawing Gaussian
    samples.

    Parameters
    ----------
    lh : EnergyOperator
        The likelihood energy.
    ic_samp : IterationController
309
        Tells an internal :class:`SamplingEnabler` which convergence criterion
Philipp Arras's avatar
Philipp Arras committed
310
311
312
313
314
315
316
        to use to draw Gaussian samples.


    See also
    --------
    `Encoding prior knowledge in the structure of the likelihood`,
    Jakob Knollmüller, Torsten A. Ensslin,
Martin Reinecke's avatar
Martin Reinecke committed
317
    `<https://arxiv.org/abs/1812.04403>`_
Martin Reinecke's avatar
Martin Reinecke committed
318
    """
Philipp Arras's avatar
Philipp Arras committed
319

Martin Reinecke's avatar
Martin Reinecke committed
320
321
322
323
    def __init__(self, lh, ic_samp=None):
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
324
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
325
326

    def apply(self, x):
327
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
328
329
330
        if (self._ic_samp is None or not isinstance(x, Linearization)
                or not x.want_metric):
            return self._lh(x) + self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
331
        else:
332
            lhx, prx = self._lh(x), self._prior(x)
333
334
            mtr = SamplingEnabler(lhx.metric, prx.metric,
                                  self._ic_samp)
Philipp Arras's avatar
Philipp Arras committed
335
            return (lhx + prx).add_metric(mtr)
Martin Reinecke's avatar
Martin Reinecke committed
336

Philipp Arras's avatar
Philipp Arras committed
337
338
339
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
        subs += '\nPrior: Quadratic{}'.format(self._lh.domain.keys())
Martin Reinecke's avatar
Martin Reinecke committed
340
        return 'StandardHamiltonian:\n' + utilities.indent(subs)
Philipp Arras's avatar
Philipp Arras committed
341

Martin Reinecke's avatar
Martin Reinecke committed
342

Martin Reinecke's avatar
Martin Reinecke committed
343
class AveragedEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
344
    """Averages an energy over samples.
Martin Reinecke's avatar
Martin Reinecke committed
345

346
347
348
    Parameters
    ----------
    h: Hamiltonian
Philipp Arras's avatar
Philipp Arras committed
349
       The energy to be averaged.
Martin Reinecke's avatar
Martin Reinecke committed
350
    res_samples : iterable of Fields
Torsten Ensslin's avatar
Torsten Ensslin committed
351
352
       Set of residual sample points to be added to mean field for
       approximate estimation of the KL.
353

Philipp Arras's avatar
Docs    
Philipp Arras committed
354
355
356
357
358
    Notes
    -----
    - Having symmetrized residual samples, with both :math:`v_i` and
      :math:`-v_i` being present, ensures that the distribution mean is
      exactly represented.
Torsten Ensslin's avatar
Fix te    
Torsten Ensslin committed
359

Philipp Arras's avatar
Docs    
Philipp Arras committed
360
361
362
    - :class:`AveragedEnergy(h)` approximates
      :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m`
      are drawn from a Gaussian distribution with covariance :math:`D`.
Martin Reinecke's avatar
Martin Reinecke committed
363
    """
Martin Reinecke's avatar
Martin Reinecke committed
364
365
366

    def __init__(self, h, res_samples):
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
367
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
368
369
370
        self._res_samples = tuple(res_samples)

    def apply(self, x):
371
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
372
373
        mymap = map(lambda v: self._h(x + v), self._res_samples)
        return utilities.my_sum(mymap)*(1./len(self._res_samples))