extra.py 6.12 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17 18

import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Martin Reinecke's avatar
fix  
Martin Reinecke committed
20 21
from .field import Field
from .linearization import Linearization
22
from .operators.linear_operator import LinearOperator
Martin Reinecke's avatar
fix  
Martin Reinecke committed
23
from .sugar import from_random
24

Martin Reinecke's avatar
Martin Reinecke committed
25
__all__ = ["consistency_check", "check_value_gradient_consistency",
Martin Reinecke's avatar
Martin Reinecke committed
26
           "check_value_gradient_metric_consistency"]
27

Philipp Arras's avatar
Philipp Arras committed
28

Martin Reinecke's avatar
Martin Reinecke committed
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def _assert_allclose(f1, f2, atol, rtol):
    if isinstance(f1, Field):
        return np.testing.assert_allclose(f1.local_data, f2.local_data,
                                          atol=atol, rtol=rtol)
    for key, val in f1.items():
        _assert_allclose(val, f2[key], atol=atol, rtol=rtol)


def _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.ADJOINT_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    f1 = from_random("normal", op.domain, dtype=domain_dtype)
    f2 = from_random("normal", op.target, dtype=target_dtype)
    res1 = f1.vdot(op.adjoint_times(f2))
    res2 = op.times(f1).vdot(f2)
    np.testing.assert_allclose(res1, res2, atol=atol, rtol=rtol)


def _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.INVERSE_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    foo = from_random("normal", op.target, dtype=target_dtype)
    res = op(op.inverse_times(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)

    foo = from_random("normal", op.domain, dtype=domain_dtype)
    res = op.inverse_times(op(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)


def _full_implementation(op, domain_dtype, target_dtype, atol, rtol):
    _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol)
    _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol)


66 67 68 69 70 71 72 73 74
def _check_linearity(op, domain_dtype, atol, rtol):
    fld1 = from_random("normal", op.domain, dtype=domain_dtype)
    fld2 = from_random("normal", op.domain, dtype=domain_dtype)
    alpha = np.random.random()
    val1 = op(alpha*fld1+fld2)
    val2 = alpha*op(fld1)+op(fld2)
    _assert_allclose(val1, val2, atol=atol, rtol=rtol)


Martin Reinecke's avatar
Martin Reinecke committed
75 76
def consistency_check(op, domain_dtype=np.float64, target_dtype=np.float64,
                      atol=0, rtol=1e-7):
Philipp Arras's avatar
Philipp Arras committed
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    """Checks whether times(), adjoint_times(), inverse_times() and
    adjoint_inverse_times() (if in capability list) is implemented
    consistently. Additionally, it checks whether the operator is linear
    actually.

    Parameters
    ----------
    op : LinearOperator
        Operator which shall be checked.
    domain_dtype : FIXME
        The data type of the random vectors in the operator's domain. Default
        is `np.float64`.
    target_dtype : FIXME
        The data type of the random vectors in the operator's target. Default
        is `np.float64`.
    atol : float
        FIXME. Default is 0.
    rtol : float
        FIXME. Default is 0.
    """
97 98 99
    if not isinstance(op, LinearOperator):
        raise TypeError('This test tests only linear operators.')
    _check_linearity(op, domain_dtype, atol, rtol)
Martin Reinecke's avatar
Martin Reinecke committed
100 101 102 103 104 105 106
    _full_implementation(op, domain_dtype, target_dtype, atol, rtol)
    _full_implementation(op.adjoint, target_dtype, domain_dtype, atol, rtol)
    _full_implementation(op.inverse, target_dtype, domain_dtype, atol, rtol)
    _full_implementation(op.adjoint.inverse, domain_dtype, target_dtype, atol,
                         rtol)


Martin Reinecke's avatar
Martin Reinecke committed
107
def _get_acceptable_location(op, loc, lin):
Martin Reinecke's avatar
Martin Reinecke committed
108
    if not np.isfinite(lin.val.sum()):
Martin Reinecke's avatar
Martin Reinecke committed
109 110 111 112
        raise ValueError('Initial value must be finite')
    dir = from_random("normal", loc.domain)
    dirder = lin.jac(dir)
    if dirder.norm() == 0:
Martin Reinecke's avatar
Martin Reinecke committed
113
        dir = dir * (lin.val.norm()*1e-5)
Martin Reinecke's avatar
Martin Reinecke committed
114
    else:
Martin Reinecke's avatar
Martin Reinecke committed
115
        dir = dir * (lin.val.norm()*1e-5/dirder.norm())
Martin Reinecke's avatar
Martin Reinecke committed
116 117 118 119
    # Find a step length that leads to a "reasonable" location
    for i in range(50):
        try:
            loc2 = loc+dir
120
            lin2 = op(Linearization.make_var(loc2, lin.want_metric))
Martin Reinecke's avatar
Martin Reinecke committed
121 122 123 124 125 126 127 128 129
            if np.isfinite(lin2.val.sum()) and abs(lin2.val.sum()) < 1e20:
                break
        except FloatingPointError:
            pass
        dir = dir*0.5
    else:
        raise ValueError("could not find a reasonable initial step")
    return loc2, lin2

Martin Reinecke's avatar
Martin Reinecke committed
130

Martin Reinecke's avatar
Martin Reinecke committed
131
def _check_consistency(op, loc, tol, ntries, do_metric):
Martin Reinecke's avatar
Martin Reinecke committed
132
    for _ in range(ntries):
133
        lin = op(Linearization.make_var(loc, do_metric))
Martin Reinecke's avatar
Martin Reinecke committed
134
        loc2, lin2 = _get_acceptable_location(op, loc, lin)
Martin Reinecke's avatar
Martin Reinecke committed
135
        dir = loc2-loc
Martin Reinecke's avatar
Martin Reinecke committed
136 137 138 139
        locnext = loc2
        dirnorm = dir.norm()
        for i in range(50):
            locmid = loc + 0.5*dir
140
            linmid = op(Linearization.make_var(locmid, do_metric))
Martin Reinecke's avatar
Martin Reinecke committed
141 142
            dirder = linmid.jac(dir)
            numgrad = (lin2.val-lin.val)
Martin Reinecke's avatar
Martin Reinecke committed
143
            xtol = tol * dirder.norm() / np.sqrt(dirder.size)
Martin Reinecke's avatar
Martin Reinecke committed
144 145
            cond = (abs(numgrad-dirder) <= xtol).all()
            if do_metric:
Martin Reinecke's avatar
Martin Reinecke committed
146 147
                dgrad = linmid.metric(dir)
                dgrad2 = (lin2.gradient-lin.gradient)
Martin Reinecke's avatar
Martin Reinecke committed
148 149
                cond = cond and (abs(dgrad-dgrad2) <= xtol).all()
            if cond:
Martin Reinecke's avatar
Martin Reinecke committed
150 151 152
                break
            dir = dir*0.5
            dirnorm *= 0.5
Martin Reinecke's avatar
Martin Reinecke committed
153
            loc2, lin2 = locmid, linmid
Martin Reinecke's avatar
Martin Reinecke committed
154 155 156
        else:
            raise ValueError("gradient and value seem inconsistent")
        loc = locnext
Martin Reinecke's avatar
Martin Reinecke committed
157 158


Martin Reinecke's avatar
Martin Reinecke committed
159
def check_value_gradient_consistency(op, loc, tol=1e-8, ntries=100):
Philipp Arras's avatar
Philipp Arras committed
160
    """FIXME"""
Martin Reinecke's avatar
Martin Reinecke committed
161 162 163
    _check_consistency(op, loc, tol, ntries, False)


Martin Reinecke's avatar
Martin Reinecke committed
164
def check_value_gradient_metric_consistency(op, loc, tol=1e-8, ntries=100):
Philipp Arras's avatar
Philipp Arras committed
165
    """FIXME"""
Martin Reinecke's avatar
Martin Reinecke committed
166
    _check_consistency(op, loc, tol, ntries, True)