extra.py 7.25 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17
18

import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

20
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
fix    
Martin Reinecke committed
21
22
from .field import Field
from .linearization import Linearization
23
from .multi_domain import MultiDomain
24
from .operators.linear_operator import LinearOperator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
25
from .sugar import from_random
26

Martin Reinecke's avatar
Martin Reinecke committed
27
__all__ = ["consistency_check", "check_jacobian_consistency"]
28

Philipp Arras's avatar
Philipp Arras committed
29

Martin Reinecke's avatar
Martin Reinecke committed
30
31
32
33
34
35
36
37
def _assert_allclose(f1, f2, atol, rtol):
    if isinstance(f1, Field):
        return np.testing.assert_allclose(f1.local_data, f2.local_data,
                                          atol=atol, rtol=rtol)
    for key, val in f1.items():
        _assert_allclose(val, f2[key], atol=atol, rtol=rtol)


38
39
def _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol,
                            only_r_linear):
Martin Reinecke's avatar
Martin Reinecke committed
40
41
42
43
44
45
46
    needed_cap = op.TIMES | op.ADJOINT_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    f1 = from_random("normal", op.domain, dtype=domain_dtype)
    f2 = from_random("normal", op.target, dtype=target_dtype)
    res1 = f1.vdot(op.adjoint_times(f2))
    res2 = op.times(f1).vdot(f2)
47
48
    if only_r_linear:
        res1, res2 = res1.real, res2.real
Martin Reinecke's avatar
Martin Reinecke committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    np.testing.assert_allclose(res1, res2, atol=atol, rtol=rtol)


def _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.INVERSE_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    foo = from_random("normal", op.target, dtype=target_dtype)
    res = op(op.inverse_times(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)

    foo = from_random("normal", op.domain, dtype=domain_dtype)
    res = op.inverse_times(op(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)


65
66
67
68
def _full_implementation(op, domain_dtype, target_dtype, atol, rtol,
                         only_r_linear):
    _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol,
                            only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
69
70
71
    _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol)


72
73
74
def _check_linearity(op, domain_dtype, atol, rtol):
    fld1 = from_random("normal", op.domain, dtype=domain_dtype)
    fld2 = from_random("normal", op.domain, dtype=domain_dtype)
75
    alpha = np.random.random() # FIXME: this can break badly with MPI!
76
77
78
79
80
    val1 = op(alpha*fld1+fld2)
    val2 = alpha*op(fld1)+op(fld2)
    _assert_allclose(val1, val2, atol=atol, rtol=rtol)


81
82
83
84
85
86
87
def _domain_check(op):
    for dd in [op.domain, op.target]:
        if not isinstance(dd, (DomainTuple, MultiDomain)):
            raise TypeError('The domain and the target of an operator need to',
                            'be instances of either DomainTuple or MultiDomain.')


Martin Reinecke's avatar
Martin Reinecke committed
88
def consistency_check(op, domain_dtype=np.float64, target_dtype=np.float64,
89
                      atol=0, rtol=1e-7, only_r_linear=False):
Reimar H Leike's avatar
Reimar H Leike committed
90
91
92
93
    """
    Checks an operator for algebraic consistency of its capabilities.

    Checks whether times(), adjoint_times(), inverse_times() and
Philipp Arras's avatar
Philipp Arras committed
94
    adjoint_inverse_times() (if in capability list) is implemented
Reimar H Leike's avatar
Reimar H Leike committed
95
    consistently. Additionally, it checks whether the operator is linear.
Philipp Arras's avatar
Philipp Arras committed
96
97
98
99
100

    Parameters
    ----------
    op : LinearOperator
        Operator which shall be checked.
Reimar H Leike's avatar
Reimar H Leike committed
101
    domain_dtype : dtype
Philipp Arras's avatar
Philipp Arras committed
102
103
        The data type of the random vectors in the operator's domain. Default
        is `np.float64`.
Reimar H Leike's avatar
Reimar H Leike committed
104
    target_dtype : dtype
Philipp Arras's avatar
Philipp Arras committed
105
106
107
        The data type of the random vectors in the operator's target. Default
        is `np.float64`.
    atol : float
Martin Reinecke's avatar
Martin Reinecke committed
108
109
        Absolute tolerance for the check. If rtol is specified,
        then satisfying any tolerance will let the check pass.
Reimar H Leike's avatar
Reimar H Leike committed
110
        Default: 0.
Philipp Arras's avatar
Philipp Arras committed
111
    rtol : float
Martin Reinecke's avatar
Martin Reinecke committed
112
113
        Relative tolerance for the check. If atol is specified,
        then satisfying any tolerance will let the check pass.
Reimar H Leike's avatar
Reimar H Leike committed
114
        Default: 0.
115
116
117
    only_r_linear: bool
        set to True if the operator is only R-linear, not C-linear.
        This will relax the adjointness test accordingly.
Philipp Arras's avatar
Philipp Arras committed
118
    """
119
120
    if not isinstance(op, LinearOperator):
        raise TypeError('This test tests only linear operators.')
121
    _domain_check(op)
122
    _check_linearity(op, domain_dtype, atol, rtol)
123
124
125
126
127
128
    _full_implementation(op, domain_dtype, target_dtype, atol, rtol,
                         only_r_linear)
    _full_implementation(op.adjoint, target_dtype, domain_dtype, atol, rtol,
                         only_r_linear)
    _full_implementation(op.inverse, target_dtype, domain_dtype, atol, rtol,
                         only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
129
    _full_implementation(op.adjoint.inverse, domain_dtype, target_dtype, atol,
130
                         rtol, only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
131
132


Martin Reinecke's avatar
Martin Reinecke committed
133
def _get_acceptable_location(op, loc, lin):
Martin Reinecke's avatar
Martin Reinecke committed
134
    if not np.isfinite(lin.val.sum()):
Martin Reinecke's avatar
Martin Reinecke committed
135
136
137
138
        raise ValueError('Initial value must be finite')
    dir = from_random("normal", loc.domain)
    dirder = lin.jac(dir)
    if dirder.norm() == 0:
Martin Reinecke's avatar
Martin Reinecke committed
139
        dir = dir * (lin.val.norm()*1e-5)
Martin Reinecke's avatar
Martin Reinecke committed
140
    else:
Martin Reinecke's avatar
Martin Reinecke committed
141
        dir = dir * (lin.val.norm()*1e-5/dirder.norm())
Martin Reinecke's avatar
Martin Reinecke committed
142
143
144
145
    # Find a step length that leads to a "reasonable" location
    for i in range(50):
        try:
            loc2 = loc+dir
146
            lin2 = op(Linearization.make_var(loc2, lin.want_metric))
Martin Reinecke's avatar
Martin Reinecke committed
147
148
149
150
151
152
153
154
155
            if np.isfinite(lin2.val.sum()) and abs(lin2.val.sum()) < 1e20:
                break
        except FloatingPointError:
            pass
        dir = dir*0.5
    else:
        raise ValueError("could not find a reasonable initial step")
    return loc2, lin2

Martin Reinecke's avatar
Martin Reinecke committed
156

Martin Reinecke's avatar
Martin Reinecke committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def check_jacobian_consistency(op, loc, tol=1e-8, ntries=100):
    """
    Checks the Jacobian of an operator against its finite difference
    approximation.

    Computes the Jacobian with finite differences and compares it to the
    implemented Jacobian.

    Parameters
    ----------
    op : Operator
        Operator which shall be checked.
    loc : Field or MultiField
        An Field or MultiField instance which has the same domain
        as op. The location at which the gradient is checked
    tol : float
        Tolerance for the check.
    """
175
    _domain_check(op)
Martin Reinecke's avatar
Martin Reinecke committed
176
    for _ in range(ntries):
177
        lin = op(Linearization.make_var(loc))
Martin Reinecke's avatar
Martin Reinecke committed
178
        loc2, lin2 = _get_acceptable_location(op, loc, lin)
Martin Reinecke's avatar
Martin Reinecke committed
179
        dir = loc2-loc
Martin Reinecke's avatar
Martin Reinecke committed
180
181
182
183
        locnext = loc2
        dirnorm = dir.norm()
        for i in range(50):
            locmid = loc + 0.5*dir
184
            linmid = op(Linearization.make_var(locmid))
Martin Reinecke's avatar
Martin Reinecke committed
185
186
            dirder = linmid.jac(dir)
            numgrad = (lin2.val-lin.val)
Martin Reinecke's avatar
Martin Reinecke committed
187
            xtol = tol * dirder.norm() / np.sqrt(dirder.size)
Martin Reinecke's avatar
Martin Reinecke committed
188
            if (abs(numgrad-dirder) <= xtol).all():
Martin Reinecke's avatar
Martin Reinecke committed
189
190
191
                break
            dir = dir*0.5
            dirnorm *= 0.5
Martin Reinecke's avatar
Martin Reinecke committed
192
            loc2, lin2 = locmid, linmid
Martin Reinecke's avatar
Martin Reinecke committed
193
194
195
        else:
            raise ValueError("gradient and value seem inconsistent")
        loc = locnext