field.py 31 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

4
from d2o import distributed_data_object,\
5
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
6

7
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
8

9
from nifty.field_types import FieldType
10

11
from nifty.spaces.space import Space
12
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
13

csongor's avatar
csongor committed
14
import nifty.nifty_utilities as utilities
15
16
from nifty.random import Random

17
18
19
import logging
logger = logging.getLogger('NIFTy.Field')

csongor's avatar
csongor committed
20

21
class Field(object):
theos's avatar
theos committed
22
    # ---Initialization methods---
23

theos's avatar
theos committed
24
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
25
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
26

27
        self.domain = self._parse_domain(domain=domain, val=val)
28
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
29

30
        self.field_type = self._parse_field_type(field_type, val=val)
31

theos's avatar
theos committed
32
33
34
35
36
37
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
38

theos's avatar
theos committed
39
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
40
                                       val=val,
theos's avatar
theos committed
41
42
                                       domain=self.domain,
                                       field_type=self.field_type)
43

44
45
46
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
47
48
49

        self.set_val(new_val=val, copy=copy)

50
    def _parse_domain(self, domain, val=None):
51
        if domain is None:
52
53
54
55
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
56
        elif isinstance(domain, Space):
57
            domain = (domain,)
58
59
60
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
61
        for d in domain:
62
            if not isinstance(d, Space):
63
64
65
                raise TypeError(
                    "Given domain contains something that is not a "
                    "nifty.space.")
csongor's avatar
csongor committed
66
67
        return domain

68
    def _parse_field_type(self, field_type, val=None):
69
        if field_type is None:
70
71
72
73
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
74
        elif isinstance(field_type, FieldType):
75
            field_type = (field_type,)
76
77
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
78
        for ft in field_type:
79
            if not isinstance(ft, FieldType):
80
81
                raise TypeError(
                    "Given object is not a nifty.FieldType.")
82
83
        return field_type

theos's avatar
theos committed
84
85
86
87
88
89
90
91
92
93
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
94

95
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
96
        if dtype is None:
97
98
99
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
100
101
102
103
104
105
106
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
107

theos's avatar
theos committed
108
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
109

theos's avatar
theos committed
110
        return dtype
111

112
113
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
114
            if isinstance(val, distributed_data_object):
115
                distribution_strategy = val.distribution_strategy
116
            elif isinstance(val, Field):
117
                distribution_strategy = val.distribution_strategy
118
            else:
119
                logger.info("Datamodel set to default!")
120
                distribution_strategy = gc['default_distribution_strategy']
121
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
122
123
124
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
125
        return distribution_strategy
126
127

    # ---Factory methods---
128

129
130
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
131
                    distribution_strategy=None, **kwargs):
132
133
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
134
                distribution_strategy=distribution_strategy)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
170
        else:
171
172
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
173

174
        return random_arguments
csongor's avatar
csongor committed
175

176
177
178
179
180
181
182
183
184
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
185
                    "Field has a space in `domain` which is neither "
186
187
188
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
189
190
191
192
193
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
194
195
196
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
197
198

        if len(spaces) == 0:
199
200
            raise ValueError(
                "No space for analysis specified.")
201
        elif len(spaces) > 1:
202
203
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
204
205
206
207

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
208
209
            raise ValueError(
                "The analyzed space must be harmonic.")
210

211
212
213
214
215
216
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

217
218
219
220
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

221
222
223
224
225
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

226
227
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
228
                                  distribution_strategy=distribution_strategy,
229
230
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
231

232
        # extract pindex and rho from power_domain
233
234
        pindex = power_domain.pindex
        rho = power_domain.rho
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
291
            raise ValueError("pindex's distribution strategy must be "
292
293
294
295
296
297
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
298
                    "A slicing distributor shall not be reshaped to "
299
300
301
302
303
304
305
306
307
308
309
310
311
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

312
    def power_synthesize(self, spaces=None, real_signal=True):
313
        # assert that all spaces in `self.domain` are either of signal-type or
314
315
        # power_space instances
        for sp in self.domain:
316
            if not sp.harmonic and not isinstance(sp, PowerSpace):
317
                raise AttributeError(
318
                    "Field has a space in `domain` which is neither "
319
320
                    "harmonic nor a PowerSpace.")

321
322
323
324
325
326
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
327
328
329
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
330
331

        if len(spaces) == 0:
332
333
            raise ValueError(
                "No space for synthesis specified.")
334
        elif len(spaces) > 1:
335
336
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
337
338
339
340

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
341
342
            raise ValueError(
                "A PowerSpace is needed for field synthetization.")
343
344
345
346
347
348
349
350
351
352
353
354
355
356

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

357
358
359
360
361
362
        result_list = [self.__class__.from_random(
                             'normal',
                             result_domain,
                             dtype=harmonic_domain.dtype,
                             field_type=self.field_type,
                             distribution_strategy=self.distribution_strategy)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
387
388
            logger.warn(
                "The distribution_stragey of pindex does not fit the "
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
        local_spec = self.val.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
        local_rescaler = local_spec[local_blow_up]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
423

theos's avatar
theos committed
424
    # ---Properties---
425

theos's avatar
theos committed
426
    def set_val(self, new_val=None, copy=False):
427
428
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
429
430
431
            new_val = new_val.copy()
        self._val = new_val
        return self._val
csongor's avatar
csongor committed
432

433
434
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
435
            return self._val.copy()
436
        else:
theos's avatar
theos committed
437
            return self._val
csongor's avatar
csongor committed
438

theos's avatar
theos committed
439
440
441
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
442

theos's avatar
theos committed
443
444
445
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
446

447
448
    @property
    def shape(self):
449
450
451
452
453
454
455
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
456

457
        return global_shape
csongor's avatar
csongor committed
458

459
460
    @property
    def dim(self):
theos's avatar
theos committed
461
462
463
464
465
466
467
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
468

469
470
    @property
    def dof(self):
theos's avatar
theos committed
471
472
473
474
475
476
477
478
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
479
        try:
theos's avatar
theos committed
480
            return reduce(lambda x, y: x * y, volume_tuple)
481
        except TypeError:
theos's avatar
theos committed
482
            return 0
483

theos's avatar
theos committed
484
    # ---Special unary/binary operations---
485

csongor's avatar
csongor committed
486
487
488
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
489
490
        else:
            dtype = np.dtype(dtype)
491

492
493
494
495
496
497
498
499
500
        for ind, sp in enumerate(self.domain):
            casted_x = sp.pre_cast(x,
                                   axes=self.domain_axes[ind])

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.pre_cast(casted_x,
                                   axes=self.field_type_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
501
502

        for ind, sp in enumerate(self.domain):
503
504
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
505
506

        for ind, ft in enumerate(self.field_type):
507
508
            casted_x = ft.post_cast(casted_x,
                                    axes=self.field_type_axes[ind])
509
510

        return casted_x
csongor's avatar
csongor committed
511

theos's avatar
theos committed
512
    def _actual_cast(self, x, dtype=None):
513
        if isinstance(x, Field):
csongor's avatar
csongor committed
514
515
516
517
518
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

519
        return_x = distributed_data_object(
520
521
522
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
523
524
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
525
526

    def copy(self, domain=None, dtype=None, field_type=None,
527
             distribution_strategy=None):
theos's avatar
theos committed
528
        copied_val = self.get_val(copy=True)
529
530
531
532
533
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                field_type=field_type,
                                distribution_strategy=distribution_strategy)
theos's avatar
theos committed
534
535
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
536

theos's avatar
theos committed
537
    def copy_empty(self, domain=None, dtype=None, field_type=None,
538
                   distribution_strategy=None):
theos's avatar
theos committed
539
540
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
541
        else:
theos's avatar
theos committed
542
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
543

theos's avatar
theos committed
544
545
546
547
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
548

theos's avatar
theos committed
549
550
551
552
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
553

554
555
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
556

theos's avatar
theos committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
571
                distribution_strategy == self.distribution_strategy):
theos's avatar
theos committed
572
573
574
575
576
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
577
                              distribution_strategy=distribution_strategy)
theos's avatar
theos committed
578
        return new_field
csongor's avatar
csongor committed
579

theos's avatar
theos committed
580
581
582
583
584
585
586
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
587
            if key != '_val':
theos's avatar
theos committed
588
589
590
591
592
593
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
594
        if inplace:
csongor's avatar
csongor committed
595
596
597
598
            new_field = self
        else:
            new_field = self.copy_empty()

599
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
600

csongor's avatar
csongor committed
601
        if spaces is None:
theos's avatar
theos committed
602
603
604
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
605

606
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
607
608
609
610
611
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
612
613

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
614
615
        return new_field

theos's avatar
theos committed
616
617
618
619
620
621
622
623
624
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
625
626
                raise ValueError(
                    "domains are incompatible.")
theos's avatar
theos committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

645
    def norm(self, q=2):
csongor's avatar
csongor committed
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
660
        if q == 2:
661
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
662
        else:
663
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

680
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
681
        new_val = new_val.conjugate()
682
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
683
684
685

        return work_field

theos's avatar
theos committed
686
    # ---General unary/contraction methods---
687

theos's avatar
theos committed
688
689
    def __pos__(self):
        return self.copy()
690

theos's avatar
theos committed
691
692
693
694
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
695
696
        return return_field

theos's avatar
theos committed
697
698
699
700
701
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
702

theos's avatar
theos committed
703
704
705
706
707
708
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
709

theos's avatar
theos committed
710
711
712
713
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
714

theos's avatar
theos committed
715
716
717
718
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
719
        try:
theos's avatar
theos committed
720
            axes_list = reduce(lambda x, y: x+y, axes_list)
721
        except TypeError:
theos's avatar
theos committed
722
            axes_list = ()
csongor's avatar
csongor committed
723

theos's avatar
theos committed
724
725
726
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
727

theos's avatar
theos committed
728
729
730
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
731
        else:
theos's avatar
theos committed
732
733
734
735
736
737
738
739
740
741
742
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
743

theos's avatar
theos committed
744
745
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
746

theos's avatar
theos committed
747
748
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
749

theos's avatar
theos committed
750
751
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
752

theos's avatar
theos committed
753
754
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
755

theos's avatar
theos committed
756
757
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
758

theos's avatar
theos committed
759
760
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
761

theos's avatar
theos committed
762
763
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
764

theos's avatar
theos committed
765
766
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
767

theos's avatar
theos committed
768
769
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
770

theos's avatar
theos committed
771
772
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
773

theos's avatar
theos committed
774
775
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
776

theos's avatar
theos committed
777
    # ---General binary methods---
csongor's avatar
csongor committed
778

theos's avatar
theos committed
779
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
780
        # if other is a field, make sure that the domains match
781
        if isinstance(other, Field):
theos's avatar
theos committed
782
783
784
785
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
786
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
787
788
789
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
790
791
                raise ValueError(
                    "domains are incompatible.")
theos's avatar
theos committed
792
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
793

theos's avatar
theos committed
794
795
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
796
797
798
799
800
801

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
802
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
803
804
805
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
806
        return self._binary_helper(other, op='__add__')
807

808
    def __radd__(self, other):
theos's avatar
theos committed
809
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
810
811

    def __iadd__(self, other):
theos's avatar
theos committed
812
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
813
814

    def __sub__(self, other):
theos's avatar
theos committed
815
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
816
817

    def __rsub__(self, other):
theos's avatar
theos committed
818
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
819
820

    def __isub__(self, other):
theos's avatar
theos committed
821
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
822
823

    def __mul__(self, other):
theos's avatar
theos committed
824
        return self._binary_helper(other, op='__mul__')
825

826
    def __rmul__(self, other):
theos's avatar
theos committed
827
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
828
829

    def __imul__(self, other):
theos's avatar
theos committed
830
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
831
832

    def __div__(self, other):
theos's avatar
theos committed
833
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
834
835

    def __rdiv__(self, other):
theos's avatar
theos committed
836
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
837
838

    def __idiv__(self, other):
theos's avatar
theos committed
839
        return self._binary_helper(other, op='__idiv__', inplace=True)
840

csongor's avatar
csongor committed
841
    def __pow__(self, other):
theos's avatar
theos committed
842
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
843
844

    def __rpow__(self, other):
theos's avatar
theos committed
845
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
846
847

    def __ipow__(self, other):
theos's avatar
theos committed
848
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
849
850

    def __lt__(self, other):
theos's avatar
theos committed
851
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
852
853

    def __le__(self, other):
theos's avatar
theos committed
854
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
855
856
857
858
859

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
860
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
861
862
863
864
865

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
866
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
867
868

    def __ge__(self, other):
theos's avatar
theos committed
869
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
870
871

    def __gt__(self, other):
theos's avatar
theos committed
872
873
874
875
876
877
878
879
880
881
882
883
884
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
885

886

887
class EmptyField(Field):
csongor's avatar
csongor committed
888
889
    def __init__(self):
        pass