correlated_fields.py 15.2 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34
from ..sugar import from_global_data, full, makeDomain
35
from ..probing import StatCalculator
36

Philipp Arras's avatar
Philipp Arras committed
37

38
39
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
40
41
42
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
43
44
    return logmean, logsig

45
46
47
48
49
50
51
52
53
54
class _lognormal_moment_matching(Operator):
    def __init__(self,mean, sig, key):
        key = str(key)
        logmean, logsig = _lognormal_moments(mean, sig)
        self._mean = mean
        self._sig = sig
        op = _normal(logmean, logsig, key).exp()
        self._domain = op.domain
        self._target = op.target
        self.apply = op.apply
55

56
57
58
    @property
    def mean(self):
        return self._mean
Philipp Arras's avatar
Philipp Arras committed
59

60
61
62
    @property
    def std(self):
        return self._sig
63

Philipp Arras's avatar
Philipp Arras committed
64
65
66
67
68
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Arras's avatar
Philipp Arras committed
69
70
71
72
def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
73
74
75
76
77
78
79
80
81
82
83
def _logkl(power_space):
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
    logkl = np.insert(logkl, 0, 0)
    return logkl


Philipp Frank's avatar
Philipp Frank committed
84
class _SlopeRemover(EndomorphicOperator):
Philipp Arras's avatar
Philipp Arras committed
85
    def __init__(self, domain):
Philipp Frank's avatar
Philipp Frank committed
86
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
87
88
        assert len(self._domain) == 1
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
89
        logkl = _logkl(self._domain)
90
        self._sc = logkl/float(logkl[-1])
Philipp Frank's avatar
Philipp Frank committed
91
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
92

93
94
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
95
96
        x = x.to_global_data()
        if mode == self.TIMES:
97
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
98
        else:
99
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
100
101
            res += x
            res[-1] -= (x*self._sc).sum()
102
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
103

104

Philipp Arras's avatar
Philipp Arras committed
105
106
107
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
Philipp Arras's avatar
Philipp Arras committed
108
109
        assert len(self._target) == 1
        assert isinstance(self._target[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
        logk_lengths = _log_k_lengths(self._target[0])
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
            res[0] = 0
            res[1] = 0
            res[2:] = np.cumsum(x[1])
            res[2:] = (res[2:] + res[1:-1])/2*self._logvol + x[0]
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
            x[2:] *= self._logvol/2.
135
136
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
137
138
139
140
141
142
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
143
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
144
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
164
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
165
166
167
168
169
170
171
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


172
173
174
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, key):
Philipp Arras's avatar
Philipp Arras committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
        dt = twolog._logvol
        sc = np.zeros(twolog.domain.shape)
        sc[0] = sc[1] = np.sqrt(dt)
        sc = from_global_data(twolog.domain, sc)
        expander = VdotOperator(sc).adjoint
        sigmasq = expander @ flexibility

        dist = np.zeros(twolog.domain.shape)
        dist[0] += 1.
        dist = from_global_data(twolog.domain, dist)
        scale = VdotOperator(dist).adjoint @ asperity

        shift = np.ones(scale.target.shape)
        shift[0] = dt**2/12.
        shift = from_global_data(scale.target, shift)
        scale = sigmasq*(Adder(shift) @ scale).sqrt()

        smooth = twolog @ (scale*ducktape(scale.target, None, key))
Philipp Arras's avatar
Philipp Arras committed
208
        tg = smooth.target
Philipp Arras's avatar
Philipp Arras committed
209
210
        noslope = _SlopeRemover(tg) @ smooth
        _t = VdotOperator(from_global_data(tg, _logkl(tg))).adjoint
Philipp Arras's avatar
Philipp Arras committed
211
        smoothslope = _t @ loglogavgslope + noslope
Philipp Arras's avatar
Philipp Arras committed
212
213
214
215
216
217
218
219
220

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
Philipp Arras's avatar
Philipp Arras committed
221
222
        op = adder @ ((expander @ fluctuations)*normal_ampl)
        self.apply = op.apply
223
        self.fluctuation_amplitude = fluctuations
Philipp Arras's avatar
Philipp Arras committed
224
        self._domain, self._target = op.domain, op.target
Philipp Arras's avatar
Philipp Arras committed
225

226
227
228
229

class CorrelatedFieldMaker:
    def __init__(self):
        self._a = []
230
        self._azm = None
231
232
233
234
235
236
237
238
239
240
241

    def add_fluctuations(self,
                         target,
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
242
243
                         prefix='',
                         index = None):
Philipp Arras's avatar
Philipp Arras committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
268
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
269
                        prefix + 'loglogavgslope')
270
271
272
273
274
        amp = _Amplitude(target, fluct, flex, asp, avgsl, prefix + 'spectrum')
        if index is not None:
            self._a.insert(index, amp)
        else:
            self._a.append(amp)
275
276
277

    def finalize_from_op(self, zeromode, prefix=''):
        assert isinstance(zeromode, Operator)
278
        self._azm = zeromode
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        hspace = makeDomain([dd.target[0].harmonic_partner for dd in self._a])
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ zeromode

        n_amplitudes = len(self._a)
        ht = HarmonicTransformOperator(hspace, space=0)
        for i in range(1, n_amplitudes):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht

        pd = PowerDistributor(hspace, self._a[0].target[0], 0)
        for i in range(1, n_amplitudes):
            foo = PowerDistributor(pd.domain, self._a[i].target[0], space=i)
            pd = pd @ foo

        spaces = tuple(range(n_amplitudes))
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[(i + 1):])
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
301

302
        return ht(azm*(pd @ a)*ducktape(hspace, None, prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
303
304
305
306

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
307
                 prefix='',
Philipp Arras's avatar
Philipp Arras committed
308
309
310
311
312
313
314
315
316
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
317
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
318
319
320
321
            offset = float(offset)
        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
322
        return self.finalize_from_op(azm, prefix)
Philipp Arras's avatar
Philipp Arras committed
323
324
325

    @property
    def amplitudes(self):
326
        return self._a
327

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    @property
    def amplitude_total_offset(self):
        return self._azm

    @property
    def total_fluctuation(self):
        if len(self._a) == 0:
            raise(NotImplementedError)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for a in self._a:
            fl = a.fluctuation_amplitude
            q = q * (Adder(full(fl.target,1.)) @ fl**2)
        return (Adder(full(q.target,-1.)) @ q).sqrt()

    def slice_fluctuation(self,space):
        if len(self._a) == 0:
            raise(NotImplementedError)
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for j in range(len(self._a)):
            fl = self._a[j].fluctuation_amplitude
            if j == space:
                q = q * fl**2
            else:
                q = q * (Adder(full(fl.target,1.)) @ fl**2)
        return q.sqrt()
    
    def average_fluctuation(self,space):
        if len(self._a) == 0:
            raise(NotImplementedError)
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude

    def offset_amplitude_realized(self,samples):
        res = 0.
        for s in samples:
            res += s.mean()**2
        return np.sqrt(res/len(samples))
    
    def total_fluctuation_realized(self,samples):
        res = 0.
        for s in samples:
            res = res + (s-s.mean())**2
        res = res/len(samples)
        return np.sqrt(res.mean())
    
    def average_fluctuation_realized(self,samples,space):
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
        spaces=()
        for i in range(ldom):
            if i != space:
                spaces += (i,)
        res = 0.
        for s in samples:
            r = s.mean(spaces)
            res = res + (r-r.mean())**2
        res = res/len(samples)
        return np.sqrt(res.mean())
    
    def slice_fluctuation_realized(self,samples,space):
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
        res1 = 0.
        res2 = 0.
        for s in samples:
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
        res = res1.mean() -  res2.mean()
        return np.sqrt(res)

    def stats(self,op,samples):
        sc = StatCalculator()
        for s in samples:
            sc.add(op(s.extract(op.domain)))
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        return sc.mean.to_global_data(), sc.var.sqrt().to_global_data()
    
    def moment_slice_to_average(self,
                                fluctuations_slice_mean,
                                nsamples = 1000):
        fluctuations_slice_mean = float(fluctuations_slice_mean)
        assert fluctuations_slice_mean > 0
        scm = 1.
        for a in self._a:
            m, std = a.fluctuation_amplitude.mean, a.fluctuation_amplitude.std
            mu, sig = _lognormal_moments(m,std)
            flm = np.exp(mu + sig * np.random.normal(size=nsamples))
            scm *= flm**2 + 1.
        scm = np.mean(np.sqrt(scm))
        return fluctuations_slice_mean / scm