test_field.py 5.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18
19
20
21
22

import unittest

import numpy as np
from numpy.testing import assert_,\
23
24
                          assert_almost_equal,\
                          assert_allclose
Theo Steininger's avatar
Theo Steininger committed
25
from nose.plugins.skip import SkipTest
26

27
from itertools import product
28
29

from nifty import Field,\
30
31
32
                  RGSpace,\
                  LMSpace,\
                  PowerSpace
33

34
from d2o import distributed_data_object
35

Jait Dixit's avatar
Jait Dixit committed
36
from test.common import expand
37
38


Martin Reinecke's avatar
Martin Reinecke committed
39
SPACES = [RGSpace((4,)), RGSpace((5))]
Theo Steininger's avatar
Theo Steininger committed
40
SPACE_COMBINATIONS = [(), SPACES[0], SPACES[1], SPACES]
41
42
43


class Test_Interface(unittest.TestCase):
44
    @expand(product(SPACE_COMBINATIONS,
Martin Reinecke's avatar
Martin Reinecke committed
45
                    [['distribution_strategy', str],
46
47
48
49
50
51
52
53
54
55
                     ['domain', tuple],
                     ['domain_axes', tuple],
                     ['val', distributed_data_object],
                     ['shape', tuple],
                     ['dim', np.int],
                     ['dof', np.int],
                     ['total_volume', np.float]]))
    def test_return_types(self, domain, attribute_desired_type):
        attribute = attribute_desired_type[0]
        desired_type = attribute_desired_type[1]
56
        f = Field(domain=domain)
57
58
        assert_(isinstance(getattr(f, attribute), desired_type))

Martin Reinecke's avatar
Martin Reinecke committed
59

60
61
62
63
64
65
66
class Test_Functionality(unittest.TestCase):
    @expand(product([True, False], [True, False],
                    [True, False], [True, False],
                    [(1,), (4,), (5,)], [(1,), (6,), (7,)]))
    def test_hermitian_decomposition(self, z1, z2, preserve, complexdata,
                                     s1, s2):
        np.random.seed(123)
Theo Steininger's avatar
Theo Steininger committed
67
68
69
70
71
72
        try:
            r1 = RGSpace(s1, harmonic=True, zerocenter=(z1,))
            r2 = RGSpace(s2, harmonic=True, zerocenter=(z2,))
            ra = RGSpace(s1+s2, harmonic=True, zerocenter=(z1, z2))
        except ValueError:
            raise SkipTest
Martin Reinecke's avatar
Martin Reinecke committed
73

Martin Reinecke's avatar
Martin Reinecke committed
74
75
        if preserve:
            complexdata=True
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        v = np.random.random(s1+s2)
        if complexdata:
            v = v + 1j*np.random.random(s1+s2)
        f1 = Field(ra, val=v, copy=True)
        f2 = Field((r1, r2), val=v, copy=True)
        h1, a1 = Field._hermitian_decomposition((ra,), f1.val, (0,),
                                                ((0, 1,),), preserve)
        h2, a2 = Field._hermitian_decomposition((r1, r2), f2.val, (0, 1),
                                                ((0,), (1,)), preserve)
        h3, a3 = Field._hermitian_decomposition((r1, r2), f2.val, (1, 0),
                                                ((0,), (1,)), preserve)

        assert_almost_equal(h1.get_full_data(), h2.get_full_data())
        assert_almost_equal(a1.get_full_data(), a2.get_full_data())
        assert_almost_equal(h1.get_full_data(), h3.get_full_data())
        assert_almost_equal(a1.get_full_data(), a3.get_full_data())
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    @expand(product([RGSpace((8,), harmonic=True,
                             zerocenter=False),
                     RGSpace((8, 8), harmonic=True, distances=0.123,
                             zerocenter=True)],
                    [RGSpace((8,), harmonic=True,
                             zerocenter=False),
                     LMSpace(12)]))
    def test_power_synthesize_analyze(self, space1, space2):
        p1 = PowerSpace(space1)
        spec1 = lambda k: 42/(1+k)**2
        fp1 = Field(p1, val=spec1)

        p2 = PowerSpace(space2)
        spec2 = lambda k: 42/(1+k)**3
        fp2 = Field(p2, val=spec2)

        outer = np.outer(fp1.val.get_full_data(), fp2.val.get_full_data())
        fp = Field((p1, p2), val=outer)

        samples = 1000
        ps1 = 0.
        ps2 = 0.
        for ii in xrange(samples):
            sk = fp.power_synthesize(spaces=(0, 1), real_signal=True)

            sp = sk.power_analyze(spaces=(0, 1), keep_phase_information=False)
            ps1 += sp.sum(spaces=1)/fp2.sum()
            ps2 += sp.sum(spaces=0)/fp1.sum()

        assert_allclose(ps1.val.get_full_data()/samples,
                        fp1.val.get_full_data(),
                        rtol=0.1)
        assert_allclose(ps2.val.get_full_data()/samples,
                        fp2.val.get_full_data(),
                        rtol=0.1)
Martin Reinecke's avatar
Martin Reinecke committed
128
129
130
131
132
133
134
135
136

    def test_vdot(self):
        s=RGSpace((10,))
        f1=Field.from_random("normal",domain=s,dtype=np.complex128)
        f2=Field.from_random("normal",domain=s,dtype=np.complex128)
        assert_allclose(f1.vdot(f2),f1.vdot(f2,spaces=0))
        assert_allclose(f1.vdot(f2),np.conj(f2.vdot(f1)))