field.py 46.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
20
21

import itertools
csongor's avatar
csongor committed
22
23
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
24
25
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
26

27
from d2o import distributed_data_object,\
28
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
29

30
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
31

32
from nifty.domain_object import DomainObject
33

34
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
35

csongor's avatar
csongor committed
36
import nifty.nifty_utilities as utilities
37
38
from nifty.random import Random

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41
42
43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45
46
    In addition Field has methods to work with power-spectra.

47
48
49
50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

54
55
56
57
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59
60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62
63
64
65
66
67
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
68

69
70
71
72
73
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
74

75
76
77
78
79
80
81
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
82
83
        Name of the used distribution_strategy.

84
85
86
87
88
89
90
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
91

92
93
94
95
96
97
98
99
100
101
102
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
103

104
105
106
107
108
    See Also
    --------
    distributed_data_object

    """
109

Theo Steininger's avatar
Theo Steininger committed
110
    # ---Initialization methods---
111

112
    def __init__(self, domain=None, val=None, dtype=None,
113
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
114

115
        self.domain = self._parse_domain(domain=domain, val=val)
116
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
117

Theo Steininger's avatar
Theo Steininger committed
118
        self.dtype = self._infer_dtype(dtype=dtype,
119
                                       val=val)
120

121
122
123
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
124

125
126
127
128
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
129

130
    def _parse_domain(self, domain, val=None):
131
        if domain is None:
132
133
134
135
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
136
        elif isinstance(domain, DomainObject):
137
            domain = (domain,)
138
139
140
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
141
        for d in domain:
142
            if not isinstance(d, DomainObject):
143
144
                raise TypeError(
                    "Given domain contains something that is not a "
145
                    "DomainObject instance.")
csongor's avatar
csongor committed
146
147
        return domain

Theo Steininger's avatar
Theo Steininger committed
148
149
150
151
152
153
154
155
156
157
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
158

159
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
160
        if dtype is None:
161
            try:
162
                dtype = val.dtype
163
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
164
165
166
                try:
                    if val is None:
                        raise TypeError
167
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
168
                except(TypeError):
169
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
170
        else:
171
            dtype = np.dtype(dtype)
172

Theo Steininger's avatar
Theo Steininger committed
173
        return dtype
174

175
176
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
177
            if isinstance(val, distributed_data_object):
178
                distribution_strategy = val.distribution_strategy
179
            elif isinstance(val, Field):
180
                distribution_strategy = val.distribution_strategy
181
            else:
182
                self.logger.debug("distribution_strategy set to default!")
183
                distribution_strategy = gc['default_distribution_strategy']
184
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
185
186
187
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
188
        return distribution_strategy
189
190

    # ---Factory methods---
191

192
    @classmethod
193
    def from_random(cls, random_type, domain=None, dtype=None,
194
                    distribution_strategy=None, **kwargs):
195
196
197
198
199
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
200

201
202
203
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
204

205
206
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
207

208
209
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
210

211
212
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
213

214
215
216
217
218
219
220
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
221
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
222

223
224

        """
Theo Steininger's avatar
Theo Steininger committed
225

226
        # create a initially empty field
227
        f = cls(domain=domain, dtype=dtype,
228
                distribution_strategy=distribution_strategy)
229
230
231
232
233
234
235

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
236
        # extract the distributed_data_object from f and apply the appropriate
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
263
        else:
264
265
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
266

267
        return random_arguments
csongor's avatar
csongor committed
268

269
270
    # ---Powerspectral methods---

Theo Steininger's avatar
Theo Steininger committed
271
272
    def power_analyze(self, spaces=None, logarithmic=False, nbin=None,
                      binbounds=None, decompose_power=True):
Theo Steininger's avatar
Theo Steininger committed
273
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
274

Theo Steininger's avatar
Theo Steininger committed
275
276
277
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
278
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
279
        field, corresponding to the square root of the power spectrum.
280
281
282

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
283
284
285
286
287
288
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
            if spaces==None : Tries to synthesize for the whole domain
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
289
            {default : False}
Theo Steininger's avatar
Theo Steininger committed
290
291
292
293
294
295
296
297
298
299
300
301
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
            if binbounds==None : bins are inferred. Overwrites nbins and log
        decompose_power : boolean, *optional*
            Whether the analysed signal-space Field is intrinsically real or
            complex and if the power spectrum shall therefore be computed
            for the real and the imaginary part of the Field separately
            (default : True).
Theo Steininger's avatar
Theo Steininger committed
302

303
304
305
306
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
307
308
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
309
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
310

311
312
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
313
        out : Field
314
315
316
317
318
319
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
320

321
        """
Theo Steininger's avatar
Theo Steininger committed
322

Theo Steininger's avatar
Theo Steininger committed
323
        # check if all spaces in `self.domain` are either harmonic or
324
325
326
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
327
                self.logger.info(
328
                    "Field has a space in `domain` which is neither "
329
330
331
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
332
333
334
335
336
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
337
338
339
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
340
341

        if len(spaces) == 0:
342
343
            raise ValueError(
                "No space for analysis specified.")
344
        elif len(spaces) > 1:
345
346
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
347
348
349
350

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
351
352
            raise ValueError(
                "The analyzed space must be harmonic.")
353

354
355
356
357
358
359
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

360
361
362
363
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

364
        harmonic_domain = self.domain[space_index]
365
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
366
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
367
368
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
369

370
        # extract pindex and rho from power_domain
371
372
        pindex = power_domain.pindex
        rho = power_domain.rho
373

Theo Steininger's avatar
Theo Steininger committed
374
        if decompose_power:
375
            hermitian_part, anti_hermitian_part = \
376
                harmonic_domain.hermitian_decomposition(
377
378
379
380
381
382
383
384
385
386
387
388
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
389

390
391
        else:
            power_spectrum = self._calculate_power_spectrum(
392
393
394
395
396
397
398
399
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain
400
        result_dtype = power_spectrum.dtype
401

402
403
        result_field = self.copy_empty(
                   domain=result_domain,
404
                   dtype=result_dtype,
405
                   distribution_strategy=power_spectrum.distribution_strategy)
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
434
            raise ValueError("pindex's distribution strategy must be "
435
436
437
438
439
440
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
441
                    "A slicing distributor shall not be reshaped to "
442
443
444
445
446
447
448
449
450
451
452
453
454
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

455
456
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
457
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
458

Theo Steininger's avatar
Theo Steininger committed
459
460
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
461

462
463
464
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
465
466
467
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
468
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
469
470
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
471
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
472
473
474
475
476
477
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
478
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
479
480
481
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
482

483
484
485
486
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
487
            stored in the `spaces` in `self`.
488

Theo Steininger's avatar
Theo Steininger committed
489
490
491
492
493
494
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

495
496
497
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
498
499
500
501
502

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

503
        """
Theo Steininger's avatar
Theo Steininger committed
504

505
506
507
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
508
509
510
        if spaces is None:
            spaces = range(len(self.domain))

511
512
513
514
515
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
516
517
518

        # create the result domain
        result_domain = list(self.domain)
519
520
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
521
            harmonic_domain = power_space.harmonic_partner
522
            result_domain[power_space_index] = harmonic_domain
523
524
525

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
526
        if real_power:
527
            result_list = [None]
528
529
        else:
            result_list = [None, None]
530

531
532
        result_list = [self.__class__.from_random(
                             'normal',
533
534
535
                             mean=mean,
                             std=std,
                             domain=result_domain,
536
                             dtype=np.complex,
537
                             distribution_strategy=self.distribution_strategy)
538
539
540
541
542
543
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

        spec = self.val.get_full_data()
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

562
        if real_signal:
563
564
565
566
567
568
            result_val_list = [self._hermitian_decomposition(
                                                result_domain,
                                                result_val,
                                                spaces,
                                                result_list[0].domain_axes)[0]
                               for result_val in result_val_list]
569
570
571
572
573
574
575

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
576
        else:
577
578
579
580
            result = result_list[0] + 1j*result_list[1]

        return result

581
582
583
584
    @staticmethod
    def _hermitian_decomposition(domain, val, spaces, domain_axes):
        # hermitianize for the first space
        (h, a) = domain[spaces[0]].hermitian_decomposition(
585
586
587
                                               val,
                                               domain_axes[spaces[0]],
                                               preserve_gaussian_variance=True)
588
589
        # hermitianize all remaining spaces using the iterative formula
        for space in xrange(1, len(spaces)):
590
591
592
            (hh, ha) = domain[space].hermitian_decomposition(
                                              h,
                                              domain_axes[space],
593
                                              preserve_gaussian_variance=False)
594
595
596
            (ah, aa) = domain[space].hermitian_decomposition(
                                              a,
                                              domain_axes[space],
597
                                              preserve_gaussian_variance=False)
598
            c = (hh - ha - ah + aa).conjugate()
599
600
601
            full = (hh + ha + ah + aa)
            h = (full + c)/2.
            a = (full - c)/2.
602
603

        # correct variance
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        # in principle one must not correct the variance for the fixed
        # points of the hermitianization. However, for a complex field
        # the input field loses half of its power at its fixed points
        # in the `hermitian` part. Hence, here a factor of sqrt(2) is
        # also necessary!
        # => The hermitianization can be done on a space level since either
        # nothing must be done (LMSpace) or ALL points need a factor of sqrt(2)
        # => use the preserve_gaussian_variance flag in the
        # hermitian_decomposition method above.

        # This code is for educational purposes:
#        fixed_points = [domain[i].hermitian_fixed_points() for i in spaces]
#        # check if there was at least one flipping during hermitianization
#        flipped_Q = np.any([fp is not None for fp in fixed_points])
#        # if the array got flipped, correct the variance
#        if flipped_Q:
#            h *= np.sqrt(2)
#            a *= np.sqrt(2)
#
624
625
626
627
628
629
630
631
632
633
634
635
636
#            fixed_points = [[fp] if fp is None else fp for fp in fixed_points]
#            for product_point in itertools.product(*fixed_points):
#                slice_object = np.array((slice(None), )*len(val.shape),
#                                        dtype=np.object)
#                for i, sp in enumerate(spaces):
#                    point_component = product_point[i]
#                    if point_component is None:
#                        point_component = slice(None)
#                    slice_object[list(domain_axes[sp])] = point_component
#
#                slice_object = tuple(slice_object)
#                h[slice_object] /= np.sqrt(2)
#                a[slice_object] /= np.sqrt(2)
637
638
639

        return (h, a)

640
641
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
642
643
644

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
645
        pindex = power_space.pindex
646
647
648
649
650
651
652
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
653
            self.logger.warn(
654
                "The distribution_stragey of pindex does not fit the "
655
656
657
658
659
660
661
662
663
664
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
665
666
        local_rescaler = spec[local_blow_up]
        return local_rescaler
667

Theo Steininger's avatar
Theo Steininger committed
668
    # ---Properties---
669

Theo Steininger's avatar
Theo Steininger committed
670
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
671
        """ Sets the fields distributed_data_object.
672
673
674

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
675
        new_val : scalar, array-like, Field, None *optional*
676
677
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
678

679
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
680
681
            If False, Field tries to not copy the input data but use it
            directly.
682
683
684
685
686
687
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
688

689
690
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
691
692
            new_val = new_val.copy()
        self._val = new_val
693
        return self
csongor's avatar
csongor committed
694

695
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
696
        """ Returns the distributed_data_object associated with this Field.
697
698
699
700

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
701
702
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
703

704
705
706
707
708
709
710
711
712
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
713

714
715
716
        if self._val is None:
            self.set_val(None)

717
        if copy:
Theo Steininger's avatar
Theo Steininger committed
718
            return self._val.copy()
719
        else:
Theo Steininger's avatar
Theo Steininger committed
720
            return self._val
csongor's avatar
csongor committed
721

Theo Steininger's avatar
Theo Steininger committed
722
723
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
724
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
725

726
727
728
729
730
731
732
733
734
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
735

736
        return self.get_val(copy=False)
csongor's avatar
csongor committed
737

Theo Steininger's avatar
Theo Steininger committed
738
739
    @val.setter
    def val(self, new_val):
740
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
741

742
743
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
744
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
745

746
747
748
749
750
751
752
753
754
755
756
        Returns
        -------
        out : tuple
            The output object. The tuple contains the dimansions of the spaces
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
757

758
        shape_tuple = tuple(sp.shape for sp in self.domain)
759
760
761
762
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
763

764
        return global_shape
csongor's avatar
csongor committed
765

766
767
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
768
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
769

Theo Steininger's avatar
Theo Steininger committed
770
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
771

772
773
774
775
776
777
778
779
780
781
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
782

783
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
784
785
786
787
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
788

789
790
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
791
792
793
794
795
796
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
797
798
799
800
801
802
803
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
804
805
806
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
807
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
808
        try:
Theo Steininger's avatar
Theo Steininger committed
809
            return reduce(lambda x, y: x * y, volume_tuple)
810
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
811
            return 0.
812

Theo Steininger's avatar
Theo Steininger committed
813
    # ---Special unary/binary operations---
814

csongor's avatar
csongor committed
815
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
816
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
817

818
819
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
820
        x : scalar, d2o, Field, array_like
821
822
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
823

824
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
825
826
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
827

828
829
830
831
832
833
834
835
836
837
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
838
839
        if dtype is None:
            dtype = self.dtype
840
841
        else:
            dtype = np.dtype(dtype)
842

843
844
        casted_x = x

845
        for ind, sp in enumerate(self.domain):
846
            casted_x = sp.pre_cast(casted_x,
847
848
849
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
850
851

        for ind, sp in enumerate(self.domain):
852
853
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
854

855
        return casted_x
csongor's avatar
csongor committed
856

Theo Steininger's avatar
Theo Steininger committed
857
    def _actual_cast(self, x, dtype=None):
858
        if isinstance(x, Field):
csongor's avatar
csongor committed
859
860
861
862
863
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

864
        return_x = distributed_data_object(
865
866
867
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
868
869
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
870

871
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
872
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
873

874
875
876
877
878
879
880
881
882
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
883

884
885
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
886

887
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
888
889
            The new distribution strategy the Field shall have.

890
891
892
893
894
895
896
897
898
899
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
900

Theo Steininger's avatar
Theo Steininger committed
901
        copied_val = self.get_val(copy=True)
902
903
904
905
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
906
907
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
908

909
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
910
911
912
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
913
914
915
916
917
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
918

919
920
921
922
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
923

924
925
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
926

Theo Steininger's avatar
Theo Steininger committed
927
        distribution_strategy : string, all supported distribution strategies
928
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
929

930
931
932
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
933
            The output object.
934
935
936
937
938
939

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
940

Theo Steininger's avatar
Theo Steininger committed
941
942
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
943
        else:
Theo Steininger's avatar
Theo Steininger committed
944
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
945

Theo Steininger's avatar
Theo Steininger committed
946
947
948
949
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
950

951
952
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
953

Theo Steininger's avatar
Theo Steininger committed
954
955
956
957
958
959
960
961
962
963
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
964
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
965
966
967
968
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
969
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
970
        return new_field
csongor's avatar
csongor committed
971

Theo Steininger's avatar
Theo Steininger committed
972
973
974
975
976
977
978
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
979
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
980
981
982
983
984
985
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
986
        """ Weights the pixels of `self` with their invidual pixel-volume.
987
988
989
990

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
991
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
992

993
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
994
995
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
996

Theo Steininger's avatar
Theo Steininger committed
997
998
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
999

1000
1001
1002
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
1003
            The weighted field.
1004
1005

        """
1006
        if inplace:
csongor's avatar
csongor committed
1007
1008
1009
1010
            new_field = self
        else:
            new_field = self.copy_empty()

1011
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
1012

1013
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
1014
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
1015
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
1016

1017
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
1018
1019
1020
1021
1022
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
1023
1024

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
1025
1026
        return new_field

1027
    def dot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar
Theo Steininger committed
1028
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
1029

1030
1031
1032
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
1033
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
1034

Theo Steininger's avatar
Theo Steininger committed
1035
1036
1037
        spaces : tuple of ints
            If the domain of `self` and `x` are not the same, `spaces` specfies
            the mapping.
Theo Steininger's avatar
Theo Steininger committed
1038

1039
        bare : boolean
Theo Steininger's avatar
Theo Steininger committed
1040
            If true, no volume factors will be included in the computation.
Theo Steininger's avatar
Theo Steininger committed
1041

1042
1043
1044
        Returns
        -------
        out : float, complex
Theo Steininger's avatar
Theo Steininger committed
1045

1046
        """
1047
1048
1049
        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
1050

Martin Reinecke's avatar
Martin Reinecke committed
1051
        # Compute the dot respecting the fact of discrete/continuous spaces
Theo Steininger's avatar
Theo Steininger committed
1052
1053
1054
1055
1056
        if bare:
            y = self
        else:
            y = self.weight(power=1)

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
1072

Theo Steininger's avatar
Theo Steininger committed
1073
    def norm(self):
1074
        """ Computes the Lq-norm of the field values.
csongor's avatar
csongor committed
1075

Theo Steininger's avatar
Theo Steininger committed
1076
1077
1078
1079
        Parameters
        ----------
        q : scalar
            Parameter q of the Lq-norm (default: 2).
csongor's avatar
csongor committed
1080

Theo Steininger's avatar
Theo Steininger committed
1081
1082
1083
1084
        Returns
        -------
        norm : scalar
            The Lq-norm of the field values.
csongor's avatar
csongor committed
1085
1086

        """
Theo Steininger's avatar
Theo Steininger committed