getting_started_0.ipynb 17.9 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
11
    "# Code example: Wiener filter"
Philipp Arras's avatar
Philipp Arras committed
12
13
14
15
16
17
18
19
20
21
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
22
    "## Introduction\n",
Philipp Arras's avatar
Philipp Arras committed
23
24
25
26
    "IFT starting point:\n",
    "\n",
    "$$d = Rs+n$$\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
27
    "Typically, $s$ is a continuous field, $d$ a discrete data vector. Particularly, $R$ is not invertible.\n",
Philipp Arras's avatar
Philipp Arras committed
28
29
30
    "\n",
    "IFT aims at **inverting** the above uninvertible problem in the **best possible way** using Bayesian statistics.\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
31
    "NIFTy (Numerical Information Field Theory) is a Python framework in which IFT problems can be tackled easily.\n",
Philipp Arras's avatar
Philipp Arras committed
32
33
34
35
36
    "\n",
    "Main Interfaces:\n",
    "\n",
    "- **Spaces**: Cartesian, 2-Spheres (Healpix, Gauss-Legendre) and their respective harmonic spaces.\n",
    "- **Fields**: Defined on spaces.\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
37
    "- **Operators**: Acting on fields."
Philipp Arras's avatar
Philipp Arras committed
38
39
40
41
42
43
44
45
46
47
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
48
    "## Wiener filter on one-dimensional fields\n",
Philipp Arras's avatar
Philipp Arras committed
49
50
51
52
53
54
55
56
57
    "\n",
    "### Assumptions\n",
    "\n",
    "- $d=Rs+n$, $R$ linear operator.\n",
    "- $\\mathcal P (s) = \\mathcal G (s,S)$, $\\mathcal P (n) = \\mathcal G (n,N)$ where $S, N$ are positive definite matrices.\n",
    "\n",
    "### Posterior\n",
    "The Posterior is given by:\n",
    "\n",
Philipp Arras's avatar
Philipp Arras committed
58
    "$$\\mathcal P (s|d) \\propto P(s,d) = \\mathcal G(d-Rs,N) \\,\\mathcal G(s,S) \\propto \\mathcal G (s-m,D) $$\n",
Philipp Arras's avatar
Philipp Arras committed
59
60
    "\n",
    "where\n",
Philipp Arras's avatar
Philipp Arras committed
61
62
63
    "$$m = Dj$$\n",
    "with\n",
    "$$D = (S^{-1} +R^\\dagger N^{-1} R)^{-1} , \\quad j = R^\\dagger N^{-1} d.$$\n",
Philipp Arras's avatar
Philipp Arras committed
64
65
66
67
68
69
70
71
72
73
74
75
    "\n",
    "Let us implement this in NIFTy!"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
76
    "### In NIFTy\n",
Philipp Arras's avatar
Philipp Arras committed
77
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
78
79
    "- We assume statistical homogeneity and isotropy. Therefore the signal covariance $S$ is diagonal in harmonic space, and is described by a one-dimensional power spectrum, assumed here as $$P(k) = P_0\\,\\left(1+\\left(\\frac{k}{k_0}\\right)^2\\right)^{-\\gamma /2},$$\n",
    "with $P_0 = 0.2, k_0 = 5, \\gamma = 4$.\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
80
    "- $N = 0.2 \\cdot \\mathbb{1}$.\n",
Martin Reinecke's avatar
Martin Reinecke committed
81
82
    "- Number of data points $N_{pix} = 512$.\n",
    "- reconstruction in harmonic space.\n",
Philipp Arras's avatar
Philipp Arras committed
83
    "- Response operator:\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
84
    "$$R = FFT_{\\text{harmonic} \\rightarrow \\text{position}}$$\n"
Philipp Arras's avatar
Philipp Arras committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "N_pixels = 512     # Number of pixels\n",
    "\n",
    "def pow_spec(k):\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
100
101
    "    P0, k0, gamma = [.2, 5, 4]\n",
    "    return P0 / ((1. + (k/k0)**2)**(gamma / 2))"
Philipp Arras's avatar
Philipp Arras committed
102
103
104
105
106
107
108
109
110
111
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
112
    "### Implementation"
Philipp Arras's avatar
Philipp Arras committed
113
114
115
116
117
118
119
120
121
122
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
123
    "#### Import Modules"
Philipp Arras's avatar
Philipp Arras committed
124
125
126
127
128
129
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
Martin Reinecke's avatar
Martin Reinecke committed
130
    "scrolled": true,
Philipp Arras's avatar
Philipp Arras committed
131
132
133
134
135
136
137
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
Philipp Arras's avatar
Philipp Arras committed
138
    "import nifty8 as ift\n",
139
    "import matplotlib.pyplot as plt\n",
140
141
142
143
    "# use more realistic screen dpi (default is 72)\n",
    "plt.rcParams['figure.dpi'] = 166\n",
    "# conversion factor cm -> inch\n",
    "cm = 1./2.54"
Philipp Arras's avatar
Philipp Arras committed
144
145
146
147
148
149
150
151
152
153
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
154
    "#### Implement Propagator"
Philipp Arras's avatar
Philipp Arras committed
155
156
157
158
159
160
161
162
163
164
165
166
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
167
    "def Curvature(R, N, Sh):\n",
Martin Reinecke's avatar
Martin Reinecke committed
168
    "    IC = ift.GradientNormController(iteration_limit=50000,\n",
169
    "                                    tol_abs_gradnorm=0.1)\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
170
171
    "    # WienerFilterCurvature is (R.adjoint*N.inverse*R + Sh.inverse) plus some handy\n",
    "    # helper methods.\n",
172
    "    return ift.WienerFilterCurvature(R,N,Sh,iteration_controller=IC,iteration_controller_sampling=IC)"
Philipp Arras's avatar
Philipp Arras committed
173
174
175
176
177
178
179
180
181
182
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
183
    "#### Conjugate Gradient Preconditioning\n",
Philipp Arras's avatar
Philipp Arras committed
184
185
    "\n",
    "- $D$ is defined via:\n",
Martin Reinecke's avatar
Martin Reinecke committed
186
    "$$D^{-1} = \\mathcal S_h^{-1} + R^\\dagger N^{-1} R.$$\n",
Philipp Arras's avatar
Philipp Arras committed
187
188
    "In the end, we want to apply $D$ to $j$, i.e. we need the inverse action of $D^{-1}$. This is done numerically (algorithm: *Conjugate Gradient*). \n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
189
    "<!--\n",
Philipp Arras's avatar
Philipp Arras committed
190
191
192
193
194
195
    "- One can define the *condition number* of a non-singular and normal matrix $A$:\n",
    "$$\\kappa (A) := \\frac{|\\lambda_{\\text{max}}|}{|\\lambda_{\\text{min}}|},$$\n",
    "where $\\lambda_{\\text{max}}$ and $\\lambda_{\\text{min}}$ are the largest and smallest eigenvalue of $A$, respectively.\n",
    "\n",
    "- The larger $\\kappa$ the slower Conjugate Gradient.\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
196
    "- By default, conjugate gradient solves: $D^{-1} m = j$ for $m$, where $D^{-1}$ can be badly conditioned. If one knows a non-singular matrix $T$ for which $TD^{-1}$ is better conditioned, one can solve the equivalent problem:\n",
Philipp Arras's avatar
Philipp Arras committed
197
198
199
200
201
    "$$\\tilde A m = \\tilde j,$$\n",
    "where $\\tilde A = T D^{-1}$ and $\\tilde j = Tj$.\n",
    "\n",
    "- In our case $S^{-1}$ is responsible for the bad conditioning of $D$ depending on the chosen power spectrum. Thus, we choose\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
202
203
    "$$T = \\mathcal F^\\dagger S_h^{-1} \\mathcal F.$$\n",
    "-->"
Philipp Arras's avatar
Philipp Arras committed
204
205
206
207
208
209
210
211
212
213
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
214
    "#### Generate Mock data\n",
Philipp Arras's avatar
Philipp Arras committed
215
216
217
218
219
220
221
222
    "\n",
    "- Generate a field $s$ and $n$ with given covariances.\n",
    "- Calculate $d$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Martin Reinecke's avatar
Martin Reinecke committed
223
224
225
   "metadata": {
    "scrolled": true
   },
Philipp Arras's avatar
Philipp Arras committed
226
227
   "outputs": [],
   "source": [
228
229
230
    "s_space = ift.RGSpace(N_pixels)\n",
    "h_space = s_space.get_default_codomain()\n",
    "HT = ift.HarmonicTransformOperator(h_space, target=s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
231
232
    "\n",
    "# Operators\n",
233
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
Philipp Arras's avatar
Philipp Arras committed
234
    "R = HT # @ ift.create_harmonic_smoothing_operator((h_space,), 0, 0.02)\n",
Philipp Arras's avatar
Philipp Arras committed
235
236
    "\n",
    "# Fields and data\n",
Philipp Arras's avatar
Philipp Arras committed
237
    "sh = Sh.draw_sample_with_dtype(dtype=np.float64)\n",
238
    "noiseless_data=R(sh)\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
239
    "noise_amplitude = np.sqrt(0.2)\n",
240
    "N = ift.ScalingOperator(s_space, noise_amplitude**2)\n",
241
242
    "\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
243
    "                          std=noise_amplitude, mean=0)\n",
244
245
    "d = noiseless_data + n\n",
    "j = R.adjoint_times(N.inverse_times(d))\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
246
247
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse"
Philipp Arras's avatar
Philipp Arras committed
248
249
250
251
252
253
254
255
256
257
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
258
    "#### Run Wiener Filter"
Philipp Arras's avatar
Philipp Arras committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "m = D(j)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
282
    "#### Results"
Philipp Arras's avatar
Philipp Arras committed
283
284
285
286
287
288
289
290
291
292
293
294
295
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "# Get signal data and reconstruction data\n",
Martin Reinecke's avatar
Martin Reinecke committed
296
297
298
    "s_data = HT(sh).val\n",
    "m_data = HT(m).val\n",
    "d_data = d.val\n",
Philipp Arras's avatar
Philipp Arras committed
299
    "\n",
300
301
    "plt.figure(figsize=(15*cm,10*cm))\n",
    "plt.plot(s_data, 'r', label=\"Signal\", linewidth=2)\n",
Martin Reinecke's avatar
Martin Reinecke committed
302
    "plt.plot(d_data, 'k.', label=\"Data\")\n",
303
    "plt.plot(m_data, 'k', label=\"Reconstruction\",linewidth=2)\n",
Philipp Arras's avatar
Philipp Arras committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    "plt.title(\"Reconstruction\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [],
   "source": [
319
320
    "plt.figure(figsize=(15*cm,10*cm))\n",
    "plt.plot(s_data - s_data, 'r', label=\"Signal\", linewidth=2)\n",
Martin Reinecke's avatar
Martin Reinecke committed
321
    "plt.plot(d_data - s_data, 'k.', label=\"Data\")\n",
322
    "plt.plot(m_data - s_data, 'k', label=\"Reconstruction\",linewidth=2)\n",
323
    "plt.axhspan(-noise_amplitude,noise_amplitude, facecolor='0.9', alpha=.5)\n",
Philipp Arras's avatar
Philipp Arras committed
324
325
326
327
328
329
330
331
332
333
334
335
336
    "plt.title(\"Residuals\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
337
    "#### Power Spectrum"
Philipp Arras's avatar
Philipp Arras committed
338
339
340
341
342
343
344
345
346
347
348
349
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
350
351
    "s_power_data = ift.power_analyze(sh).val\n",
    "m_power_data = ift.power_analyze(m).val\n",
352
    "plt.figure(figsize=(15*cm,10*cm))\n",
Philipp Arras's avatar
Philipp Arras committed
353
354
355
356
357
    "plt.loglog()\n",
    "plt.xlim(1, int(N_pixels/2))\n",
    "ymin = min(m_power_data)\n",
    "plt.ylim(ymin, 1)\n",
    "xs = np.arange(1,int(N_pixels/2),.1)\n",
Martin Reinecke's avatar
Martin Reinecke committed
358
359
360
    "plt.plot(xs, pow_spec(xs), label=\"True Power Spectrum\", color='k',alpha=0.5)\n",
    "plt.plot(s_power_data, 'r', label=\"Signal\")\n",
    "plt.plot(m_power_data, 'k', label=\"Reconstruction\")\n",
361
362
    "plt.axhline(noise_amplitude**2 / N_pixels, color=\"k\", linestyle='--', label=\"Noise level\", alpha=.5)\n",
    "plt.axhspan(noise_amplitude**2 / N_pixels, ymin, facecolor='0.9', alpha=.5)\n",
Philipp Arras's avatar
Philipp Arras committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    "plt.title(\"Power Spectrum\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Wiener Filter on Incomplete Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "# Operators\n",
390
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
391
    "N = ift.ScalingOperator(s_space, noise_amplitude**2)\n",
Philipp Arras's avatar
Philipp Arras committed
392
393
394
    "# R is defined below\n",
    "\n",
    "# Fields\n",
Philipp Arras's avatar
Philipp Arras committed
395
    "sh = Sh.draw_sample_with_dtype(dtype=np.float64)\n",
396
397
398
    "s = HT(sh)\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
    "                      std=noise_amplitude, mean=0)"
Philipp Arras's avatar
Philipp Arras committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Partially Lose Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "l = int(N_pixels * 0.2)\n",
423
    "h = int(N_pixels * 0.2 * 2)\n",
Philipp Arras's avatar
Philipp Arras committed
424
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
425
426
    "mask = np.full(s_space.shape, 1.)\n",
    "mask[l:h] = 0\n",
Martin Reinecke's avatar
Martin Reinecke committed
427
    "mask = ift.Field.from_raw(s_space, mask)\n",
Philipp Arras's avatar
Philipp Arras committed
428
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
429
    "R = ift.DiagonalOperator(mask)(HT)\n",
Martin Reinecke's avatar
Martin Reinecke committed
430
    "n = n.val_rw()\n",
Martin Reinecke's avatar
Martin Reinecke committed
431
    "n[l:h] = 0\n",
Martin Reinecke's avatar
Martin Reinecke committed
432
    "n = ift.Field.from_raw(s_space, n)\n",
Philipp Arras's avatar
Philipp Arras committed
433
    "\n",
434
    "d = R(sh) + n"
Philipp Arras's avatar
Philipp Arras committed
435
436
437
438
439
440
441
442
443
444
445
446
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
447
448
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse\n",
Philipp Arras's avatar
Philipp Arras committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "m = D(j)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Compute Uncertainty\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
468
    "scrolled": true
Philipp Arras's avatar
Philipp Arras committed
469
470
471
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
472
    "m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 200, np.float64)"
Philipp Arras's avatar
Philipp Arras committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Get data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "# Get signal data and reconstruction data\n",
Martin Reinecke's avatar
Martin Reinecke committed
497
498
499
    "s_data = s.val\n",
    "m_data = HT(m).val\n",
    "m_var_data = m_var.val\n",
Martin Reinecke's avatar
Martin Reinecke committed
500
    "uncertainty = np.sqrt(m_var_data)\n",
Martin Reinecke's avatar
Martin Reinecke committed
501
    "d_data = d.val_rw()\n",
Philipp Arras's avatar
Philipp Arras committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    "\n",
    "# Set lost data to NaN for proper plotting\n",
    "d_data[d_data == 0] = np.nan"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
517
    "fig = plt.figure(figsize=(15*cm,10*cm))\n",
Martin Reinecke's avatar
Martin Reinecke committed
518
519
    "plt.axvspan(l, h, facecolor='0.8',alpha=0.5)\n",
    "plt.fill_between(range(N_pixels), m_data - uncertainty, m_data + uncertainty, facecolor='0.5', alpha=0.5)\n",
520
    "plt.plot(s_data, 'r', label=\"Signal\", alpha=1, linewidth=2)\n",
Martin Reinecke's avatar
Martin Reinecke committed
521
    "plt.plot(d_data, 'k.', label=\"Data\")\n",
522
    "plt.plot(m_data, 'k', label=\"Reconstruction\", linewidth=2)\n",
Philipp Arras's avatar
Philipp Arras committed
523
524
525
526
527
528
529
530
531
532
533
534
    "plt.title(\"Reconstruction of incomplete data\")\n",
    "plt.legend()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
Philipp Arras's avatar
Philipp Arras committed
535
    "## Wiener filter on two-dimensional field"
Philipp Arras's avatar
Philipp Arras committed
536
537
538
539
540
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Martin Reinecke's avatar
Martin Reinecke committed
541
   "metadata": {},
Philipp Arras's avatar
Philipp Arras committed
542
543
544
   "outputs": [],
   "source": [
    "N_pixels = 256      # Number of pixels\n",
Martin Reinecke's avatar
Martin Reinecke committed
545
    "sigma2 = 2.         # Noise variance\n",
Philipp Arras's avatar
Philipp Arras committed
546
547
    "\n",
    "def pow_spec(k):\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
548
    "    P0, k0, gamma = [.2, 2, 4]\n",
Martin Reinecke's avatar
Martin Reinecke committed
549
    "    return P0 * (1. + (k/k0)**2)**(-gamma/2)\n",
Philipp Arras's avatar
Philipp Arras committed
550
    "\n",
551
    "s_space = ift.RGSpace([N_pixels, N_pixels])"
Philipp Arras's avatar
Philipp Arras committed
552
553
554
555
556
557
558
559
560
561
562
563
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
564
    "h_space = s_space.get_default_codomain()\n",
Martin Reinecke's avatar
Martin Reinecke committed
565
    "HT = ift.HarmonicTransformOperator(h_space,s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
566
567
    "\n",
    "# Operators\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
568
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
569
    "N = ift.ScalingOperator(s_space, sigma2)\n",
Philipp Arras's avatar
Philipp Arras committed
570
571
    "\n",
    "# Fields and data\n",
Philipp Arras's avatar
Philipp Arras committed
572
    "sh = Sh.draw_sample_with_dtype(dtype=np.float64)\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
573
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
Philipp Arras's avatar
Philipp Arras committed
574
575
576
577
    "                      std=np.sqrt(sigma2), mean=0)\n",
    "\n",
    "# Lose some data\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
578
579
    "l = int(N_pixels * 0.33)\n",
    "h = int(N_pixels * 0.33 * 2)\n",
Philipp Arras's avatar
Philipp Arras committed
580
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
581
582
    "mask = np.full(s_space.shape, 1.)\n",
    "mask[l:h,l:h] = 0.\n",
Martin Reinecke's avatar
Martin Reinecke committed
583
    "mask = ift.Field.from_raw(s_space, mask)\n",
Philipp Arras's avatar
Philipp Arras committed
584
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
585
    "R = ift.DiagonalOperator(mask)(HT)\n",
Martin Reinecke's avatar
Martin Reinecke committed
586
    "n = n.val_rw()\n",
Martin Reinecke's avatar
Martin Reinecke committed
587
    "n[l:h, l:h] = 0\n",
Martin Reinecke's avatar
Martin Reinecke committed
588
    "n = ift.Field.from_raw(s_space, n)\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
589
590
    "curv = Curvature(R=R, N=N, Sh=Sh)\n",
    "D = curv.inverse\n",
Philipp Arras's avatar
Philipp Arras committed
591
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
592
    "d = R(sh) + n\n",
Philipp Arras's avatar
Philipp Arras committed
593
594
595
596
597
598
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "\n",
    "# Run Wiener filter\n",
    "m = D(j)\n",
    "\n",
    "# Uncertainty\n",
Martin Reinecke's avatar
Martin Reinecke committed
599
    "m_mean, m_var = ift.probe_with_posterior_samples(curv, HT, 20, np.float64)\n",
Philipp Arras's avatar
Philipp Arras committed
600
601
    "\n",
    "# Get data\n",
Martin Reinecke's avatar
Martin Reinecke committed
602
603
604
605
    "s_data = HT(sh).val\n",
    "m_data = HT(m).val\n",
    "m_var_data = m_var.val\n",
    "d_data = d.val\n",
Philipp Arras's avatar
Philipp Arras committed
606
607
608
609
610
611
612
613
614
615
616
617
618
    "uncertainty = np.sqrt(np.abs(m_var_data))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
619
    "cmap = ['magma', 'inferno', 'plasma', 'viridis'][1]\n",
Philipp Arras's avatar
Philipp Arras committed
620
621
622
623
    "\n",
    "mi = np.min(s_data)\n",
    "ma = np.max(s_data)\n",
    "\n",
624
    "fig, axes = plt.subplots(1, 2, figsize=(15*cm, 7*cm))\n",
Philipp Arras's avatar
Philipp Arras committed
625
626
627
628
629
    "\n",
    "data = [s_data, d_data]\n",
    "caption = [\"Signal\", \"Data\"]\n",
    "\n",
    "for ax in axes.flat:\n",
630
    "    im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cmap, vmin=mi,\n",
Philipp Arras's avatar
Philipp Arras committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    "                   vmax=ma)\n",
    "    ax.set_title(caption.pop(0))\n",
    "\n",
    "fig.subplots_adjust(right=0.8)\n",
    "cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])\n",
    "fig.colorbar(im, cax=cbar_ax)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "mi = np.min(s_data)\n",
    "ma = np.max(s_data)\n",
    "\n",
652
    "fig, axes = plt.subplots(3, 2, figsize=(15*cm, 22.5*cm))\n",
Philipp Arras's avatar
Philipp Arras committed
653
    "sample = HT(curv.draw_sample(from_inverse=True)+m).val\n",
Martin Reinecke's avatar
Martin Reinecke committed
654
    "post_mean = (m_mean + HT(m)).val\n",
Philipp Arras's avatar
Philipp Arras committed
655
    "\n",
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
656
657
    "data = [s_data, m_data, post_mean, sample, s_data - m_data, uncertainty]\n",
    "caption = [\"Signal\", \"Reconstruction\", \"Posterior mean\", \"Sample\", \"Residuals\", \"Uncertainty Map\"]\n",
Philipp Arras's avatar
Philipp Arras committed
658
659
    "\n",
    "for ax in axes.flat:\n",
660
    "    im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cmap, vmin=mi, vmax=ma)\n",
Philipp Arras's avatar
Philipp Arras committed
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
    "    ax.set_title(caption.pop(0))\n",
    "\n",
    "fig.subplots_adjust(right=0.8)\n",
    "cbar_ax = fig.add_axes([.85, 0.15, 0.05, 0.7])\n",
    "fig.colorbar(im, cax=cbar_ax)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Is the uncertainty map reliable?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
Martin Reinecke committed
689
    "precise = (np.abs(s_data-m_data) < uncertainty)\n",
Philipp Arras's avatar
Philipp Arras committed
690
691
    "print(\"Error within uncertainty map bounds: \" + str(np.sum(precise) * 100 / N_pixels**2) + \"%\")\n",
    "\n",
692
    "plt.figure(figsize=(15*cm,10*cm))\n",
Philipp Arras's avatar
Philipp Arras committed
693
    "plt.imshow(precise.astype(float), cmap=\"brg\")\n",
Martin Reinecke's avatar
Martin Reinecke committed
694
    "plt.colorbar()"
Philipp Arras's avatar
Philipp Arras committed
695
696
697
698
699
700
   ]
  }
 ],
 "metadata": {
  "celltoolbar": "Slideshow",
  "kernelspec": {
701
   "display_name": "Python 3",
Philipp Arras's avatar
Philipp Arras committed
702
   "language": "python",
703
   "name": "python3"
Philipp Arras's avatar
Philipp Arras committed
704
705
706
707
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
708
    "version": 3
Philipp Arras's avatar
Philipp Arras committed
709
710
711
712
713
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
714
   "pygments_lexer": "ipython3",
715
   "version": "3.9.2"
Philipp Arras's avatar
Philipp Arras committed
716
717
718
719
720
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}