distributed_do.py 16.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20
21
22

import sys

23
24
import numpy as np
from mpi4py import MPI
Philipp Arras's avatar
Philipp Arras committed
25
26
27

from ..compat import *
from .random import Random
28

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
29
30
31
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
32
master = (rank == 0)
33
34


Martin Reinecke's avatar
Martin Reinecke committed
35
36
37
38
def is_numpy():
    return False


Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
39
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
40
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
41

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
42
43

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
44
45
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
46
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
47
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
48
49
    return lo, hi

50

51
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
52
    if len(shape) == 0 or distaxis == -1:
53
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
54
55
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
56
57
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
58

59
60
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
61
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
62
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
63
            distaxis = -1
Martin Reinecke's avatar
Martin Reinecke committed
64
65
            if not isinstance(data, np.ndarray):
                data = np.full((), data)
66
67
        self._distaxis = distaxis
        self._data = data
Martin Reinecke's avatar
Martin Reinecke committed
68
69
        if local_shape(self._shape, self._distaxis) != self._data.shape:
            raise ValueError("shape mismatch")
70

71
72
73
    def copy(self):
        return data_object(self._shape, self._data.copy(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#     def _sanity_checks(self):
#         # check whether the distaxis is consistent
#         if self._distaxis < -1 or self._distaxis >= len(self._shape):
#             raise ValueError
#         itmp = np.array(self._distaxis)
#         otmp = np.empty(ntask, dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         if np.any(otmp != self._distaxis):
#             raise ValueError
#         # check whether the global shape is consistent
#         itmp = np.array(self._shape)
#         otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         for i in range(ntask):
#             if np.any(otmp[i, :] != self._shape):
#                 raise ValueError
#         # check shape of local data
#         if self._distaxis < 0:
#             if self._data.shape != self._shape:
#                 raise ValueError
#         else:
#             itmp = np.array(self._shape)
#             itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
#                                               ntask, rank)
#             if np.any(self._data.shape != itmp):
#                 raise ValueError
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
115
        return data_object(self._shape, self._data.real, self._distaxis)
116
117
118

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
119
        return data_object(self._shape, self._data.imag, self._distaxis)
120

Martin Reinecke's avatar
Martin Reinecke committed
121
122
123
124
125
126
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
127
    def _contraction_helper(self, op, mpiop, axis):
128
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
129
            if len(axis) == len(self._data.shape):
130
131
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
132
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
133
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
134
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
135
136
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
137
            return res2[()]
138
139

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
140
141
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
142
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
143
            return from_global_data(res2, distaxis=0)
144
        else:
Martin Reinecke's avatar
Martin Reinecke committed
145
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
146
147
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
148
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
149
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
150
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
151
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
152
153
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
154
155
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
156
157
158

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
159

160
161
162
    def prod(self, axis=None):
        return self._contraction_helper("prod", MPI.PROD, axis)

163
164
#    def min(self, axis=None):
#        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
165

166
167
#    def max(self, axis=None):
#        return self._contraction_helper("max", MPI.MAX, axis)
168

169
170
171
172
173
174
    def mean(self, axis=None):
        if axis is None:
            sz = self.size
        else:
            sz = reduce(lambda x, y: x*y, [self.shape[i] for i in axis])
        return self.sum(axis)/sz
Martin Reinecke's avatar
Martin Reinecke committed
175

176
177
    def std(self, axis=None):
        return np.sqrt(self.var(axis))
Martin Reinecke's avatar
Martin Reinecke committed
178

Martin Reinecke's avatar
Martin Reinecke committed
179
    # FIXME: to be improved!
180
181
182
    def var(self, axis=None):
        if axis is not None and len(axis) != len(self.shape):
            raise ValueError("functionality not yet supported")
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
183
184
        return (abs(self-self.mean())**2).mean()

185
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
186
        a = self
187
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
188
            b = other
189
190
191
192
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
193
194
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
195
196
197
198
        elif np.isscalar(other):
            a = a._data
            b = other
        elif isinstance(other, np.ndarray):
Martin Reinecke's avatar
Martin Reinecke committed
199
            a = a._data
200
            b = other
Martin Reinecke's avatar
Martin Reinecke committed
201
202
        else:
            return NotImplemented
203
204

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
205
206
207
208
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
209
210

    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
211
        return data_object(self._shape, -self._data, self._distaxis)
212
213

    def __abs__(self):
214
        return data_object(self._shape, abs(self._data), self._distaxis)
215
216

    def all(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
217
        return self.sum() == self.size
218
219

    def any(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
220
        return self.sum() != 0
221

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
222
223
    def fill(self, value):
        self._data.fill(value)
224

225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
for op in ["__add__", "__radd__", "__iadd__",
           "__sub__", "__rsub__", "__isub__",
           "__mul__", "__rmul__", "__imul__",
           "__div__", "__rdiv__", "__idiv__",
           "__truediv__", "__rtruediv__", "__itruediv__",
           "__floordiv__", "__rfloordiv__", "__ifloordiv__",
           "__pow__", "__rpow__", "__ipow__",
           "__lt__", "__le__", "__gt__", "__ge__", "__eq__", "__ne__"]:
    def func(op):
        def func2(self, other):
            return self._binary_helper(other, op=op)
        return func2
    setattr(data_object, op, func(op))

Martin Reinecke's avatar
Martin Reinecke committed
240

Martin Reinecke's avatar
Martin Reinecke committed
241
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
242
243
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
244
245


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
246
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
247
248
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
249
250


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
251
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
252
253
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
254
255


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
256
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
257
258
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
259
260
261
262
263
264
265


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
266
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
267
    if a._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
268
        return tmp[()]
Martin Reinecke's avatar
Martin Reinecke committed
269
270
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
271
    return res[()]
272
273
274


def _math_helper(x, function, out):
275
    function = getattr(np, function)
276
277
278
279
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
280
        return data_object(x.shape, function(x._data), x._distaxis)
281
282


283
_current_module = sys.modules[__name__]
Martin Reinecke's avatar
Martin Reinecke committed
284

285
for f in ["sqrt", "exp", "log", "tanh", "conjugate"]:
286
287
288
289
290
    def func(f):
        def func2(x, out=None):
            return _math_helper(x, f, out)
        return func2
    setattr(_current_module, f, func(f))
291
292


Martin Reinecke's avatar
Martin Reinecke committed
293
294
295
296
297
298
299
300
301
302
303
304
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    data = np.array(object._data, dtype=dtype, copy=copy)
    if set_locked:
Martin Reinecke's avatar
fix    
Martin Reinecke committed
305
        data.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
306
    return data_object(object._shape, data, distaxis=object._distaxis)
307
308


Martin Reinecke's avatar
Martin Reinecke committed
309
310
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
311
312
313
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
314
def from_random(random_type, shape, dtype=np.float64, **kwargs):
315
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
316
    if len(shape) == 0:
Martin Reinecke's avatar
Martin Reinecke committed
317
318
319
        ldat = generator_function(dtype=dtype, shape=shape, **kwargs)
        ldat = _comm.bcast(ldat)
        return from_local_data(shape, ldat, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
320
321
322
323
324
325
326
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
327

Martin Reinecke's avatar
Martin Reinecke committed
328

Martin Reinecke's avatar
Martin Reinecke committed
329
330
331
332
def local_data(arr):
    return arr._data


333
334
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
335
    if distaxis < 0:
336
337
338
339
340
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
341
342
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
343
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
344
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
345
346


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
347
348
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
349
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
350
    return res
Martin Reinecke's avatar
Martin Reinecke committed
351
352


353
354
355
356
357
358
def np_allreduce_min(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MIN)
    return res


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
359
360
361
362
363
364
def np_allreduce_max(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MAX)
    return res


Martin Reinecke's avatar
Martin Reinecke committed
365
366
367
368
def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
369
def from_local_data(shape, arr, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
370
371
372
    return data_object(shape, arr, distaxis)


373
374
375
def from_global_data(arr, sum_up=False, distaxis=0):
    if sum_up:
        arr = np_allreduce_sum(arr)
Martin Reinecke's avatar
Martin Reinecke committed
376
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
377
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
378
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
379
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
380
    sl[distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
381
382
383
    return data_object(arr.shape, arr[sl], distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
384
385
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
386
387
388
389
390
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
391
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
392
393
394
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
395
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
396
397
398
399
400
401
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
402
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
403
404
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
405
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
406
                break
Martin Reinecke's avatar
Martin Reinecke committed
407

Martin Reinecke's avatar
Martin Reinecke committed
408
    if arr._distaxis == -1:  # all data available, just pick the proper subset
409
        return from_global_data(arr._data, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
410
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
411
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
412
413
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
414
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
415
416
417
418
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
419
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
420
421
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
422
423
424
425
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
426
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
427
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
428

Martin Reinecke's avatar
Martin Reinecke committed
429
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
430
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
431
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
432
433
434
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
435
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
436
437
438
439
440
441
442
443
444
445
446
447
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
448
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
449
450
451
452
453
454
            ssz[i] = ssz0*(hi-lo)
            sbuf[ofs:ofs+ssz[i]] = arr._data[sslice].flat
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
455
456
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
457
458
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
459
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
460
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
461
462
463
464
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
Martin Reinecke's avatar
Martin Reinecke committed
465
        arrnew = np.empty(local_shape(arr.shape, dist), dtype=arr.dtype)
Martin Reinecke's avatar
Martin Reinecke committed
466
467
468
469
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
470
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
471
            sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
472
            arrnew[rslice].flat = rbuf[ofs:ofs+sz]
Martin Reinecke's avatar
Martin Reinecke committed
473
            ofs += sz
Martin Reinecke's avatar
Martin Reinecke committed
474
        arrnew = from_local_data(arr.shape, arrnew, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
475
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
476
477


Martin Reinecke's avatar
Martin Reinecke committed
478
479
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
480
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
481
482
483
484
485
486
487
488
489
490
491
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
492
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
493
494
495
496
497
498
499
500
501
502
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
503
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
504
505
    arrnew = np.empty((sz2, arr.shape[0]), dtype=arr.dtype)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
506
507
508
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
509
        arrnew[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
510
        ofs += sz
511
    return from_local_data((arr.shape[1], arr.shape[0]), arrnew, 0)
Martin Reinecke's avatar
Martin Reinecke committed
512
513


Martin Reinecke's avatar
Martin Reinecke committed
514
515
def default_distaxis():
    return 0
516
517
518
519
520
521
522
523


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable