field.py 22.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

Martin Reinecke's avatar
Martin Reinecke committed
19
from __future__ import division, print_function
Martin Reinecke's avatar
Martin Reinecke committed
20
from builtins import range
csongor's avatar
csongor committed
21
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
22
23
24
from .spaces.power_space import PowerSpace
from . import nifty_utilities as utilities
from .random import Random
Martin Reinecke's avatar
Martin Reinecke committed
25
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
26
from functools import reduce
27
from . import dobj
28

csongor's avatar
csongor committed
29

Martin Reinecke's avatar
Martin Reinecke committed
30
class Field(object):
Theo Steininger's avatar
Theo Steininger committed
31
32
33
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
34
    metainformation (i.e. the domain) for operators to be able to work on them.
Martin Reinecke's avatar
updates  
Martin Reinecke committed
35
    In addition, Field has methods to work with power spectra.
Theo Steininger's avatar
Theo Steininger committed
36

37
38
39
40
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
41
        LMSpace or PowerSpace. It might also be a FieldArray, which is
42
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
43

Martin Reinecke's avatar
stage1  
Martin Reinecke committed
44
    val : scalar, numpy.ndarray, Field
45
46
47
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
48

49
    dtype : type
Martin Reinecke's avatar
updates  
Martin Reinecke committed
50
        A numpy.type. Most common are float and complex.
Theo Steininger's avatar
Theo Steininger committed
51

52
53
54
55
    copy: boolean

    Attributes
    ----------
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
56
    val : numpy.ndarray
Theo Steininger's avatar
Theo Steininger committed
57

Martin Reinecke's avatar
Martin Reinecke committed
58
    domain : DomainTuple
59
60
61
        See Parameters.
    dtype : type
        Contains the datatype stored in the Field.
Theo Steininger's avatar
Theo Steininger committed
62

63
64
65
66
67
68
69
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
70

71
    """
72

Theo Steininger's avatar
Theo Steininger committed
73
    # ---Initialization methods---
74

Martin Reinecke's avatar
stage1  
Martin Reinecke committed
75
    def __init__(self, domain=None, val=None, dtype=None, copy=False):
76
        self.domain = self._parse_domain(domain=domain, val=val)
77

Martin Reinecke's avatar
Martin Reinecke committed
78
        dtype = self._infer_dtype(dtype=dtype, val=val)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
79
        if isinstance(val, Field):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
80
            if self.domain != val.domain:
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
81
                raise ValueError("Domain mismatch")
82
            self._val = dobj.from_object(val.val, dtype=dtype, copy=copy)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
83
        elif (np.isscalar(val)):
84
85
            self._val = dobj.full(self.domain.shape, dtype=dtype, fill_value=val)
        elif isinstance(val, dobj.data_object):
Martin Reinecke's avatar
Martin Reinecke committed
86
            if self.domain.shape == val.shape:
87
                self._val = dobj.from_object(val, dtype=dtype, copy=copy)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
88
89
90
            else:
                raise ValueError("Shape mismatch")
        elif val is None:
91
            self._val = dobj.empty(self.domain.shape, dtype=dtype)
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
92
93
        else:
            raise TypeError("unknown source type")
csongor's avatar
csongor committed
94

Martin Reinecke's avatar
Martin Reinecke committed
95
96
    @staticmethod
    def _parse_domain(domain, val=None):
97
        if domain is None:
98
            if isinstance(val, Field):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
99
100
                return val.domain
            if np.isscalar(val):
101
                return DomainTuple.make(())  # empty domain tuple
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
102
            raise TypeError("could not infer domain from value")
Martin Reinecke's avatar
Martin Reinecke committed
103
        return DomainTuple.make(domain)
104

Martin Reinecke's avatar
Martin Reinecke committed
105
    # MR: this needs some rethinking ... do we need to have at least float64?
Martin Reinecke's avatar
Martin Reinecke committed
106
107
    @staticmethod
    def _infer_dtype(dtype, val):
Martin Reinecke's avatar
Martin Reinecke committed
108
109
110
111
112
        if val is None or dtype is not None:
            return np.result_type(dtype, np.float64)
        if isinstance(val, Field):
            return val.dtype
        return np.result_type(val, np.float64)
113

114
    # ---Factory methods---
115

Martin Reinecke's avatar
Martin Reinecke committed
116
117
    @staticmethod
    def from_random(random_type, domain, dtype=np.float64, **kwargs):
118
119
120
121
122
123
124
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
125

126
127
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
128

129
130
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
131

132
133
134
135
136
137
138
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
139
        power_synthesize
140
        """
Theo Steininger's avatar
Theo Steininger committed
141

Martin Reinecke's avatar
Martin Reinecke committed
142
        domain = DomainTuple.make(domain)
143
        generator_function = getattr(Random, random_type)
144
        return Field(domain=domain, val=generator_function(dtype=dtype,
Martin Reinecke's avatar
Martin Reinecke committed
145
                     shape=domain.shape, **kwargs))
146

147
148
    # ---Powerspectral methods---

Martin Reinecke's avatar
Martin Reinecke committed
149
150
    def power_analyze(self, spaces=None, binbounds=None,
                      keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
151
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
152

Theo Steininger's avatar
Theo Steininger committed
153
154
155
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
156
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
157
        field, corresponding to the square root of the power spectrum.
158
159
160

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
161
        spaces : int *optional*
Martin Reinecke's avatar
Martin Reinecke committed
162
            The subspace for which the powerspectrum shall be computed.
Theo Steininger's avatar
Theo Steininger committed
163
164
165
            (default : None).
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
166
            if binbounds==None : bins are inferred.
167
168
169
170
171
172
173
174
175
176
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
177

178
179
        Raise
        -----
Martin Reinecke's avatar
Martin Reinecke committed
180
181
        TypeError
            Raised if any of the input field's domains is not harmonic
Theo Steininger's avatar
Theo Steininger committed
182

183
184
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
185
        out : Field
Martin Reinecke's avatar
typos  
Martin Reinecke committed
186
            The output object. Its domain is a PowerSpace and it contains
187
188
189
190
191
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
192

193
        """
Theo Steininger's avatar
Theo Steininger committed
194

Theo Steininger's avatar
Theo Steininger committed
195
        # check if all spaces in `self.domain` are either harmonic or
196
197
198
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
199
200
                print("WARNING: Field has a space in `domain` which is "
                      "neither harmonic nor a PowerSpace.")
201
202

        # check if the `spaces` input is valid
203
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
204
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
205
206
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
207
208

        if len(spaces) == 0:
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
209
            raise ValueError("No space for analysis specified.")
210

211
        if keep_phase_information:
212
            parts = [self.real*self.real, self.imag*self.imag]
213
        else:
214
            parts = [self.real*self.real + self.imag*self.imag]
215
216

        for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
217
218
            parts = [self._single_power_analyze(field=part,
                                                idx=space_index,
219
                                                binbounds=binbounds)
220
                     for part in parts]
221

222
        return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]
223

Martin Reinecke's avatar
Martin Reinecke committed
224
    @staticmethod
Martin Reinecke's avatar
Martin Reinecke committed
225
226
227
    def _single_power_analyze(field, idx, binbounds):
        power_domain = PowerSpace(field.domain[idx], binbounds)
        pindex = power_domain.pindex
Martin Reinecke's avatar
Martin Reinecke committed
228
        axes = field.domain.axes[idx]
Martin Reinecke's avatar
Martin Reinecke committed
229
230
231
232
        new_pindex_shape = [1] * len(field.shape)
        for i, ax in enumerate(axes):
            new_pindex_shape[ax] = pindex.shape[i]
        pindex = np.broadcast_to(pindex.reshape(new_pindex_shape), field.shape)
Theo Steininger's avatar
Theo Steininger committed
233

Martin Reinecke's avatar
Martin Reinecke committed
234
235
        power_spectrum = dobj.bincount_axis(pindex, weights=field.val,
                                            axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
236
237
238
239
240
241
        new_rho_shape = [1] * len(power_spectrum.shape)
        new_rho_shape[axes[0]] = len(power_domain.rho)
        power_spectrum /= power_domain.rho.reshape(new_rho_shape)
        result_domain = list(field.domain)
        result_domain[idx] = power_domain
        return Field(result_domain, power_spectrum)
242

Martin Reinecke's avatar
Martin Reinecke committed
243
    def _compute_spec(self, spaces):
244
245
        if spaces is None:
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
246
247
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
248
249
250
251
252
253
254
255
256

        # create the result domain
        result_domain = list(self.domain)
        for i in spaces:
            if not isinstance(self.domain[i], PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
            result_domain[i] = self.domain[i].harmonic_partner

257
        spec = dobj.sqrt(self.val)
258
        for i in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
259
260
261
262
            power_space = self.domain[i]
            local_blow_up = [slice(None)]*len(spec.shape)
            # it is important to count from behind, since spec potentially
            # grows with every iteration
Martin Reinecke's avatar
Martin Reinecke committed
263
            index = self.domain.axes[i][0]-len(self.shape)
Martin Reinecke's avatar
Martin Reinecke committed
264
265
266
267
            local_blow_up[index] = power_space.pindex
            # here, the power_spectrum is distributed into the new shape
            spec = spec[local_blow_up]
        return Field(result_domain, val=spec)
268
269

    def power_synthesize(self, spaces=None, real_power=True, real_signal=True):
Theo Steininger's avatar
Theo Steininger committed
270
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
271

Theo Steininger's avatar
Theo Steininger committed
272
        This method draws a Gaussian random field in the harmonic partner
Martin Reinecke's avatar
typos  
Martin Reinecke committed
273
        domain of this field's domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
274

275
276
277
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
278
279
280
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
281
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
282
283
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
284
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
285
286
            True will result in a purely real signal-space field
            (default : True).
Theo Steininger's avatar
Theo Steininger committed
287

288
289
290
291
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
292
            stored in the `spaces` in `self`.
293

Theo Steininger's avatar
Theo Steininger committed
294
295
296
297
298
299
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

300
301
302
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
303
304
305
306
307

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

308
        """
Theo Steininger's avatar
Theo Steininger committed
309

Martin Reinecke's avatar
Martin Reinecke committed
310
        spec = self._compute_spec(spaces)
311
312
313

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
314
        result = [self.from_random('normal', mean=0., std=1.,
Martin Reinecke's avatar
Martin Reinecke committed
315
                                   domain=spec.domain,
316
317
318
319
320
321
322
                                   dtype=np.float if real_signal
                                   else np.complex)
                  for x in range(1 if real_power else 2)]

        # MR: dummy call - will be removed soon
        if real_signal:
            self.from_random('normal', mean=0., std=1.,
Martin Reinecke's avatar
Martin Reinecke committed
323
                             domain=spec.domain, dtype=np.float)
324
325

        # apply the rescaler to the random fields
326
        result[0] *= spec.real
327
        if not real_power:
328
            result[1] *= spec.imag
329

330
        return result[0] if real_power else result[0] + 1j*result[1]
331

332
    def power_synthesize_special(self, spaces=None):
Martin Reinecke's avatar
Martin Reinecke committed
333
        spec = self._compute_spec(spaces)
334
335
336

        # MR: dummy call - will be removed soon
        self.from_random('normal', mean=0., std=1.,
Martin Reinecke's avatar
Martin Reinecke committed
337
                         domain=spec.domain, dtype=np.complex)
338
339

        return spec.real
340

Theo Steininger's avatar
Theo Steininger committed
341
    # ---Properties---
342

Theo Steininger's avatar
Theo Steininger committed
343
344
    @property
    def val(self):
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
345
        """ Returns the data object associated with this Field.
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
346
        No copy is made.
Theo Steininger's avatar
Theo Steininger committed
347

348
349
        Returns
        -------
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
350
        out : numpy.ndarray
351
        """
Martin Reinecke's avatar
Martin Reinecke committed
352
        return self._val
csongor's avatar
csongor committed
353

Martin Reinecke's avatar
Martin Reinecke committed
354
355
356
357
    @property
    def dtype(self):
        return self._val.dtype

358
359
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
360
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
361

362
363
364
        Returns
        -------
        out : tuple
Martin Reinecke's avatar
Martin Reinecke committed
365
            The output object. The tuple contains the dimensions of the spaces
366
            in domain.
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
367
       """
Martin Reinecke's avatar
Martin Reinecke committed
368
        return self.domain.shape
csongor's avatar
csongor committed
369

370
371
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
372
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
373

Theo Steininger's avatar
Theo Steininger committed
374
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
375

376
377
378
379
380
        Returns
        -------
        out : int
            The dimension of the Field.
        """
Martin Reinecke's avatar
Martin Reinecke committed
381
        return self.domain.dim
csongor's avatar
csongor committed
382

Theo Steininger's avatar
Theo Steininger committed
383
384
385
386
    @property
    def real(self):
        """ The real part of the field (data is not copied).
        """
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
387
        return Field(self.domain, self.val.real)
Theo Steininger's avatar
Theo Steininger committed
388
389
390
391
392

    @property
    def imag(self):
        """ The imaginary part of the field (data is not copied).
        """
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
393
        return Field(self.domain, self.val.imag)
Theo Steininger's avatar
Theo Steininger committed
394

Theo Steininger's avatar
Theo Steininger committed
395
    # ---Special unary/binary operations---
396

Martin Reinecke's avatar
Martin Reinecke committed
397
    def copy(self):
398
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
399

Martin Reinecke's avatar
Martin Reinecke committed
400
        The returned object will be an identical copy of the original Field.
Theo Steininger's avatar
Theo Steininger committed
401

402
403
404
405
406
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.
        """
Martin Reinecke's avatar
Martin Reinecke committed
407
        return Field(val=self, copy=True)
csongor's avatar
csongor committed
408

409
410
    def scalar_weight(self, spaces=None):
        if np.isscalar(spaces):
411
            return self.domain[spaces].scalar_dvol()
412
413
414

        if spaces is None:
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
415
        res = 1.
416
        for i in spaces:
417
            tmp = self.domain[i].scalar_dvol()
418
419
420
421
422
            if tmp is None:
                return None
            res *= tmp
        return res

423
    def weight(self, power=1, spaces=None, out=None):
Theo Steininger's avatar
Theo Steininger committed
424
        """ Weights the pixels of `self` with their invidual pixel-volume.
425
426
427
428

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
429
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
430

Theo Steininger's avatar
Theo Steininger committed
431
432
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
433

434
435
436
437
438
        out : Field or None
            if not None, the result is returned in a new Field
            otherwise the contents of "out" are overwritten with the result.
            "out" may be identical to "self"!

439
440
441
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
442
            The weighted field.
443
444

        """
445
446
447
448
449
        if out is None:
            out = self.copy()
        else:
            if out is not self:
                out.copy_content_from(self)
csongor's avatar
csongor committed
450

csongor's avatar
csongor committed
451
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
452
            spaces = range(len(self.domain))
Martin Reinecke's avatar
Martin Reinecke committed
453
454
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
csongor's avatar
csongor committed
455

456
457
        fct = 1.
        for ind in spaces:
458
            wgt = self.domain[ind].dvol()
459
460
461
            if np.isscalar(wgt):
                fct *= wgt
            else:
462
                new_shape = dobj.ones(len(self.shape), dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
463
464
                new_shape[self.domain.axes[ind][0]:
                          self.domain.axes[ind][-1]+1] = wgt.shape
465
                wgt = wgt.reshape(new_shape)
466
                out *= wgt**power
467
        fct = fct**power
Martin Reinecke's avatar
Martin Reinecke committed
468
        if fct != 1.:
469
            out *= fct
470

471
        return out
csongor's avatar
csongor committed
472

Martin Reinecke's avatar
Martin Reinecke committed
473
    def vdot(self, x=None, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
474
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
475

476
477
478
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
479
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
480

Theo Steininger's avatar
Theo Steininger committed
481
        spaces : tuple of ints
482
483
            If the domain of `self` and `x` are not the same, `spaces` defines
            which domains of `x` are mapped to those of `self`.
Theo Steininger's avatar
Theo Steininger committed
484

485
486
487
        Returns
        -------
        out : float, complex
Theo Steininger's avatar
Theo Steininger committed
488

489
        """
490
491
492
        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
493

Martin Reinecke's avatar
Martin Reinecke committed
494
        # Compute the dot respecting the fact of discrete/continuous spaces
Martin Reinecke's avatar
Martin Reinecke committed
495
496
        tmp = self.scalar_weight(spaces)
        if tmp is None:
497
            fct = 1.
Martin Reinecke's avatar
Martin Reinecke committed
498
            y = self.weight(power=1)
499
        else:
Martin Reinecke's avatar
Martin Reinecke committed
500
501
            y = self
            fct = tmp
Theo Steininger's avatar
Theo Steininger committed
502

503
        if spaces is None:
504
            return fct*dobj.vdot(y.val.ravel(), x.val.ravel())
505
        else:
506
507
508
509
510
511
512
513
            spaces = utilities.cast_iseq_to_tuple(spaces)
            active_axes = []
            for i in spaces:
                active_axes += self.domain.axes[i]
            res = 0.
            for sl in utilities.get_slice_list(self.shape, active_axes):
                res += dobj.vdot(y.val, x.val[sl])
            return res*fct
Theo Steininger's avatar
Theo Steininger committed
514

Theo Steininger's avatar
Theo Steininger committed
515
    def norm(self):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
516
        """ Computes the L2-norm of the field values.
csongor's avatar
csongor committed
517

Theo Steininger's avatar
Theo Steininger committed
518
519
        Returns
        -------
Martin Reinecke's avatar
Martin Reinecke committed
520
        norm : float
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
521
            The L2-norm of the field values.
csongor's avatar
csongor committed
522
523

        """
524
        return np.sqrt(np.abs(self.vdot(x=self)))
csongor's avatar
csongor committed
525

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
526
    def conjugate(self):
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
527
        """ Returns the complex conjugate of the field.
Theo Steininger's avatar
Theo Steininger committed
528

529
530
531
532
        Returns
        -------
        cc : field
            The complex conjugated field.
csongor's avatar
csongor committed
533
534

        """
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
535
        return Field(self.domain, self.val.conjugate(), self.dtype)
csongor's avatar
csongor committed
536

Theo Steininger's avatar
Theo Steininger committed
537
    # ---General unary/contraction methods---
538

Theo Steininger's avatar
Theo Steininger committed
539
540
    def __pos__(self):
        return self.copy()
541

Theo Steininger's avatar
Theo Steininger committed
542
    def __neg__(self):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
543
        return Field(self.domain, -self.val, self.dtype)
csongor's avatar
csongor committed
544

Theo Steininger's avatar
Theo Steininger committed
545
    def __abs__(self):
546
        return Field(self.domain, dobj.abs(self.val), self.dtype)
csongor's avatar
csongor committed
547

548
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
549
        if spaces is None:
550
            return getattr(self.val, op)()
Martin Reinecke's avatar
Martin Reinecke committed
551
552
        else:
            spaces = utilities.cast_iseq_to_tuple(spaces)
csongor's avatar
csongor committed
553

Martin Reinecke's avatar
Martin Reinecke committed
554
        axes_list = tuple(self.domain.axes[sp_index] for sp_index in spaces)
555

Martin Reinecke's avatar
Martin Reinecke committed
556
        if len(axes_list) > 0:
Theo Steininger's avatar
Theo Steininger committed
557
            axes_list = reduce(lambda x, y: x+y, axes_list)
csongor's avatar
csongor committed
558

Martin Reinecke's avatar
stage1  
Martin Reinecke committed
559
        # perform the contraction on the data
560
        data = getattr(self.val, op)(axis=axes_list)
csongor's avatar
csongor committed
561

Theo Steininger's avatar
Theo Steininger committed
562
563
564
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
565
        else:
Theo Steininger's avatar
Theo Steininger committed
566
            return_domain = tuple(self.domain[i]
Martin Reinecke's avatar
Martin Reinecke committed
567
                                  for i in range(len(self.domain))
Theo Steininger's avatar
Theo Steininger committed
568
                                  if i not in spaces)
569

Martin Reinecke's avatar
updates  
Martin Reinecke committed
570
            return Field(domain=return_domain, val=data, copy=False)
csongor's avatar
csongor committed
571

572
573
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
574

575
576
577
578
    def integrate(self, spaces=None):
        tmp = self.weight(1, spaces=spaces)
        return tmp.sum(spaces)

579
580
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
581

582
583
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
584

585
586
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
587

588
589
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
590

591
592
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
593

594
595
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
596

597
598
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
599

600
601
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
602

603
604
605
606
607
608
609
    def copy_content_from(self, other):
        if not isinstance(other, Field):
            raise TypeError("argument must be a Field")
        if other.domain != self.domain:
            raise ValueError("domains are incompatible.")
        self.val[()] = other.val

Theo Steininger's avatar
Theo Steininger committed
610
    # ---General binary methods---
csongor's avatar
csongor committed
611

612
    def _binary_helper(self, other, op):
csongor's avatar
csongor committed
613
        # if other is a field, make sure that the domains match
614
        if isinstance(other, Field):
615
616
            if other.domain != self.domain:
                raise ValueError("domains are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
617
618
            tval = getattr(self.val, op)(other.val)
            return self if tval is self.val else Field(self.domain, tval)
csongor's avatar
csongor committed
619

Martin Reinecke's avatar
Martin Reinecke committed
620
621
        tval = getattr(self.val, op)(other)
        return self if tval is self.val else Field(self.domain, tval)
csongor's avatar
csongor committed
622
623

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
624
        return self._binary_helper(other, op='__add__')
625

626
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
627
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
628
629

    def __iadd__(self, other):
630
        return self._binary_helper(other, op='__iadd__')
csongor's avatar
csongor committed
631
632

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
633
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
634
635

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
636
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
637
638

    def __isub__(self, other):
639
        return self._binary_helper(other, op='__isub__')
csongor's avatar
csongor committed
640
641

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
642
        return self._binary_helper(other, op='__mul__')
643

644
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
645
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
646
647

    def __imul__(self, other):
648
        return self._binary_helper(other, op='__imul__')
csongor's avatar
csongor committed
649
650

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
651
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
652

Martin Reinecke's avatar
Martin Reinecke committed
653
654
655
    def __truediv__(self, other):
        return self._binary_helper(other, op='__truediv__')

csongor's avatar
csongor committed
656
    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
657
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
658

Martin Reinecke's avatar
Martin Reinecke committed
659
660
661
    def __rtruediv__(self, other):
        return self._binary_helper(other, op='__rtruediv__')

csongor's avatar
csongor committed
662
    def __idiv__(self, other):
663
        return self._binary_helper(other, op='__idiv__')
664

csongor's avatar
csongor committed
665
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
666
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
667
668

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
669
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
670
671

    def __ipow__(self, other):
672
        return self._binary_helper(other, op='__ipow__')
csongor's avatar
csongor committed
673
674

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
675
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
676
677

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
678
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
679
680
681
682
683

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
684
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
685
686
687
688
689

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
690
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
691
692

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
693
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
694
695

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
696
697
698
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
699
        return "<nifty2go.Field>"
Theo Steininger's avatar
Theo Steininger committed
700
701
702
703

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
Martin Reinecke's avatar
Martin Reinecke committed
704
        return "nifty2go.Field instance\n- domain      = " + \
Theo Steininger's avatar
Theo Steininger committed
705
               repr(self.domain) + \
706
               "\n- val         = " + repr(self.val) + \
Theo Steininger's avatar
Theo Steininger committed
707
708
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)