sugar.py 9.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

19
from __future__ import absolute_import, division, print_function
20

21
import sys
22

23
import numpy as np
24
25
26
27

from . import dobj, utilities
from .compat import *
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
28
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
29
from .field import Field
30
from .logger import logger
Reimar H Leike's avatar
Reimar H Leike committed
31
from .multi.block_diagonal_operator import BlockDiagonalOperator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
32
from .multi.multi_domain import MultiDomain
33
from .multi.multi_field import MultiField
Martin Reinecke's avatar
Martin Reinecke committed
34
from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
Martin Reinecke committed
35
from .operators.power_distributor import PowerDistributor
36

Martin Reinecke's avatar
Martin Reinecke committed
37

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
38
39
__all__ = ['PS_field', 'power_analyze', 'create_power_operator',
           'create_harmonic_smoothing_operator', 'from_random',
40
           'full', 'from_global_data', 'from_local_data',
Martin Reinecke's avatar
Martin Reinecke committed
41
42
           'makeDomain', 'sqrt', 'exp', 'log', 'tanh', 'positive_tanh',
           'conjugate', 'get_signal_variance', 'makeOp', 'domain_union']
43

44

45
def PS_field(pspace, func):
Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
    if not isinstance(pspace, PowerSpace):
        raise TypeError
    data = dobj.from_global_data(func(pspace.k_lengths))
49
    return Field(DomainTuple.make(pspace), data)
Martin Reinecke's avatar
Martin Reinecke committed
50

Martin Reinecke's avatar
Martin Reinecke committed
51

52
53
54
55
56
57
58
59
60
61
62
63
64
def get_signal_variance(spec, space):
    """
    Computes how much a field with a given power spectrum will vary in space

    This is a small helper function that computes how the expected variance
    of a harmonically transformed sample of this power spectrum.

    Parameters
    ---------
    spec: method
        a method that takes one k-value and returns the power spectrum at that
        location
    space: PowerSpace or any harmonic Domain
Martin Reinecke's avatar
Martin Reinecke committed
65
66
67
68
        If this function is given a harmonic domain, it creates the naturally
        binned PowerSpace to that domain.
        The field, for which the signal variance is then computed, is assumed
        to have this PowerSpace as naturally binned PowerSpace
69
70
71
72
    """
    if space.harmonic:
        space = PowerSpace(space)
    if not isinstance(space, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
73
74
        raise ValueError(
            "space must be either a harmonic space or Power space.")
75
76
77
78
79
    field = PS_field(space, spec)
    dist = PowerDistributor(space.harmonic_partner, space)
    k_field = dist(field)
    return k_field.weight(2).sum()

80

81
82
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
83
84
    pd = PowerDistributor(field.domain, power_domain, idx)
    return pd.adjoint_times(field.weight(1)).weight(-1)  # divides by bin size
85
86


Martin Reinecke's avatar
Martin Reinecke committed
87
88
# MR FIXME: this function is not well suited for analyzing more than one
# subdomain at once, because it allows only one set of binbounds.
89
90
def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
Martin Reinecke's avatar
Martin Reinecke committed
91
    """ Computes the power spectrum for a subspace of `field`.
92
93
94
95

    Creates a PowerSpace for the space addressed by `spaces` with the given
    binning and computes the power spectrum as a Field over this
    PowerSpace. This can only be done if the subspace to  be analyzed is a
Martin Reinecke's avatar
Martin Reinecke committed
96
97
    harmonic space. The resulting field has the same units as the square of the
    initial field.
98
99
100
101
102

    Parameters
    ----------
    field : Field
        The field to be analyzed
Martin Reinecke's avatar
Martin Reinecke committed
103
104
105
    spaces : None or int or tuple of int, optional
        The indices of subdomains for which the power spectrum shall be
        computed.
Martin Reinecke's avatar
Martin Reinecke committed
106
        If None, all subdomains will be converted.
107
        (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
108
    binbounds : None or array-like, optional
109
        Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
110
111
        if binbounds is None : bins are inferred.
    keep_phase_information : bool, optional
112
113
114
115
116
117
118
119
120
121
122
123
        If False, return a real-valued result containing the power spectrum
        of the input Field.
        If True, return a complex-valued result whose real component
        contains the power spectrum computed from the real part of the
        input Field, and whose imaginary component contains the power
        spectrum computed from the imaginary part of the input Field.
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
124
    Field
125
        The output object. Its domain is a PowerSpace and it contains
Martin Reinecke's avatar
Martin Reinecke committed
126
        the power spectrum of `field`.
127
128
129
130
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
131
132
            logger.warning("WARNING: Field has a space in `domain` which is "
                           "neither harmonic nor a PowerSpace.")
133

134
    spaces = utilities.parse_spaces(spaces, len(field.domain))
135
136
137
138

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

Martin Reinecke's avatar
Martin Reinecke committed
139
    field_real = not utilities.iscomplextype(field.dtype)
140
141
142
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

143
144
145
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
146
147
148
149
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
150
151

    for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
152
        parts = [_single_power_analyze(part, space_index, binbounds)
153
154
155
156
157
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
158
def _create_power_field(domain, power_spectrum):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
159
160
161
162
163
164
165
166
    if not callable(power_spectrum):  # we have a Field living on a PowerSpace
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
167
        fp = power_spectrum
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
168
169
    else:
        power_domain = PowerSpace(domain)
170
        fp = PS_field(power_domain, power_spectrum)
171

Martin Reinecke's avatar
Martin Reinecke committed
172
    return PowerDistributor(domain, power_domain)(fp)
173

174

175
def create_power_operator(domain, power_spectrum, space=None):
Theo Steininger's avatar
Theo Steininger committed
176
    """ Creates a diagonal operator with the given power spectrum.
177

178
    Constructs a diagonal operator that lives over the specified domain.
179

180
181
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
182
    domain : Domain, tuple of Domain or DomainTuple
183
        Domain over which the power operator shall live.
Martin Reinecke's avatar
Martin Reinecke committed
184
185
    power_spectrum : callable or Field
        An object that contains the power spectrum as a function of k.
Martin Reinecke's avatar
Martin Reinecke committed
186
    space : int
Martin Reinecke's avatar
Martin Reinecke committed
187
        the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
188

189
190
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
191
192
    DiagonalOperator
        An operator that implements the given power spectrum.
193
    """
Martin Reinecke's avatar
Martin Reinecke committed
194
    domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
195
    space = utilities.infer_space(domain, space)
Martin Reinecke's avatar
Martin Reinecke committed
196
197
    field = _create_power_field(domain[space], power_spectrum)
    return DiagonalOperator(field, domain, space)
198

199

200
201
202
203
def create_harmonic_smoothing_operator(domain, space, sigma):
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230


def full(domain, val):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.full(domain, val)
    return Field.full(domain, val)


def from_random(random_type, domain, dtype=np.float64, **kwargs):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_random(random_type, domain, dtype, **kwargs)
    return Field.from_random(random_type, domain, dtype, **kwargs)


def from_global_data(domain, arr, sum_up=False):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_global_data(domain, arr, sum_up)
    return Field.from_global_data(domain, arr, sum_up)


def from_local_data(domain, arr):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_local_data(domain, arr)
    return Field.from_local_data(domain, arr)


def makeDomain(domain):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
231
    if isinstance(domain, (MultiDomain, dict)):
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
232
233
        return MultiDomain.make(domain)
    return DomainTuple.make(domain)
234
235


236
def makeOp(input):
Martin Reinecke's avatar
Martin Reinecke committed
237
238
    if input is None:
        return None
Martin Reinecke's avatar
Martin Reinecke committed
239
240
241
    if isinstance(input, Field):
        return DiagonalOperator(input)
    if isinstance(input, MultiField):
Martin Reinecke's avatar
Martin Reinecke committed
242
        return BlockDiagonalOperator(
Martin Reinecke's avatar
Martin Reinecke committed
243
            input.domain, tuple(makeOp(val) for val in input.values()))
Martin Reinecke's avatar
Martin Reinecke committed
244
245
    raise NotImplementedError

Martin Reinecke's avatar
more    
Martin Reinecke committed
246
247
248
249
250
251
252
253

def domain_union(domains):
    if isinstance(domains[0], DomainTuple):
        if any(dom is not domains[0] for dom in domains[1:]):
            raise ValueError("domain mismatch")
        return domains[0]
    return MultiDomain.union(domains)

Martin Reinecke's avatar
more    
Martin Reinecke committed
254

255
256
# Arithmetic functions working on Fields

257

258
259
_current_module = sys.modules[__name__]

Martin Reinecke's avatar
Martin Reinecke committed
260
for f in ["sqrt", "exp", "log", "tanh", "positive_tanh", "conjugate"]:
261
    def func(f):
262
        def func2(x):
Martin Reinecke's avatar
Martin Reinecke committed
263
            from .linearization import Linearization
Martin Reinecke's avatar
Martin Reinecke committed
264
265
            from .operators.operator import Operator
            if isinstance(x, (Field, MultiField, Linearization, Operator)):
Martin Reinecke's avatar
Martin Reinecke committed
266
                return getattr(x, f)()
267
            else:
268
                return getattr(np, f)(x)
269
270
        return func2
    setattr(_current_module, f, func(f))