field.py 29.6 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
4
5
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
6

7
from d2o import distributed_data_object,\
8
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
9

10
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
11

12
from nifty.domain_object import DomainObject
13

14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17
18
from nifty.random import Random

csongor's avatar
csongor committed
19

Jait Dixit's avatar
Jait Dixit committed
20
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
21
    # ---Initialization methods---
22

23
    def __init__(self, domain=None, val=None, dtype=None,
24
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
25

26
        self.domain = self._parse_domain(domain=domain, val=val)
27
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
28

Theo Steininger's avatar
Theo Steininger committed
29
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
30
                                       val=val,
31
                                       domain=self.domain)
32

33
34
35
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
36

37
38
39
40
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
41

42
    def _parse_domain(self, domain, val=None):
43
        if domain is None:
44
45
46
47
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
48
        elif isinstance(domain, DomainObject):
49
            domain = (domain,)
50
51
52
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
53
        for d in domain:
54
            if not isinstance(d, DomainObject):
55
56
                raise TypeError(
                    "Given domain contains something that is not a "
57
                    "DomainObject instance.")
csongor's avatar
csongor committed
58
59
        return domain

Theo Steininger's avatar
Theo Steininger committed
60
61
62
63
64
65
66
67
68
69
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
70

71
    def _infer_dtype(self, dtype, val, domain):
csongor's avatar
csongor committed
72
        if dtype is None:
73
74
75
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
Theo Steininger's avatar
Theo Steininger committed
76
77
78
79
80
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
csongor's avatar
csongor committed
81

Theo Steininger's avatar
Theo Steininger committed
82
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
83

Theo Steininger's avatar
Theo Steininger committed
84
        return dtype
85

86
87
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
88
            if isinstance(val, distributed_data_object):
89
                distribution_strategy = val.distribution_strategy
90
            elif isinstance(val, Field):
91
                distribution_strategy = val.distribution_strategy
92
            else:
93
                self.logger.debug("Datamodel set to default!")
94
                distribution_strategy = gc['default_distribution_strategy']
95
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
96
97
98
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
99
        return distribution_strategy
100
101

    # ---Factory methods---
102

103
    @classmethod
104
    def from_random(cls, random_type, domain=None, dtype=None,
105
                    distribution_strategy=None, **kwargs):
106
        # create a initially empty field
107
        f = cls(domain=domain, dtype=dtype,
108
                distribution_strategy=distribution_strategy)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
144
        else:
145
146
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
147

148
        return random_arguments
csongor's avatar
csongor committed
149

150
151
152
153
154
155
156
157
158
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
159
                    "Field has a space in `domain` which is neither "
160
161
162
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
163
164
165
166
167
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
168
169
170
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
171
172

        if len(spaces) == 0:
173
174
            raise ValueError(
                "No space for analysis specified.")
175
        elif len(spaces) > 1:
176
177
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
178
179
180
181

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
182
183
            raise ValueError(
                "The analyzed space must be harmonic.")
184

185
186
187
188
189
190
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

191
192
193
194
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

195
196
197
198
199
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

200
201
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
202
                                  distribution_strategy=distribution_strategy,
203
204
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
205

206
        # extract pindex and rho from power_domain
207
208
        pindex = power_domain.pindex
        rho = power_domain.rho
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
227
228
229
230
231
232
233
234
235
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

236
237
238
        result_field = self.copy_empty(
                   domain=result_domain,
                   distribution_strategy=power_spectrum.distribution_strategy)
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
267
            raise ValueError("pindex's distribution strategy must be "
268
269
270
271
272
273
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
274
                    "A slicing distributor shall not be reshaped to "
275
276
277
278
279
280
281
282
283
284
285
286
287
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

288
289
    def power_synthesize(self, spaces=None, real_signal=True,
                         mean=None, std=None):
290
291
292
293

        if mean is None:
            mean = 1.

294
        # assert that all spaces in `self.domain` are either of signal-type or
295
296
        # power_space instances
        for sp in self.domain:
297
            if not sp.harmonic and not isinstance(sp, PowerSpace):
298
                raise AttributeError(
299
                    "Field has a space in `domain` which is neither "
300
301
                    "harmonic nor a PowerSpace.")

302
303
304
305
306
307
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
308
309
310
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
311
312

        if len(spaces) == 0:
313
314
            raise ValueError(
                "No space for synthesis specified.")
315
        elif len(spaces) > 1:
316
317
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
318
319
320
321

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
322
323
            raise ValueError(
                "A PowerSpace is needed for field synthetization.")
324
325
326
327
328
329
330
331
332
333
334
335
336
337

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

338
339
        result_list = [self.__class__.from_random(
                             'normal',
340
341
342
                             mean=mean,
                             std=std,
                             domain=result_domain,
343
344
                             dtype=harmonic_domain.dtype,
                             distribution_strategy=self.distribution_strategy)
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
369
            self.logger.warn(
370
                "The distribution_stragey of pindex does not fit the "
371
372
373
374
375
376
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
377
        full_spec = self.val.get_full_data()
378
379
380
381
382

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
383
        local_rescaler = full_spec[local_blow_up]
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
405

Theo Steininger's avatar
Theo Steininger committed
406
    # ---Properties---
407

Theo Steininger's avatar
Theo Steininger committed
408
    def set_val(self, new_val=None, copy=False):
409
410
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
411
412
            new_val = new_val.copy()
        self._val = new_val
413
        return self
csongor's avatar
csongor committed
414

415
    def get_val(self, copy=False):
416
417
418
        if self._val is None:
            self.set_val(None)

419
        if copy:
Theo Steininger's avatar
Theo Steininger committed
420
            return self._val.copy()
421
        else:
Theo Steininger's avatar
Theo Steininger committed
422
            return self._val
csongor's avatar
csongor committed
423

Theo Steininger's avatar
Theo Steininger committed
424
425
    @property
    def val(self):
426
        return self.get_val(copy=False)
csongor's avatar
csongor committed
427

Theo Steininger's avatar
Theo Steininger committed
428
429
    @val.setter
    def val(self, new_val):
430
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
431

432
433
    @property
    def shape(self):
434
        shape_tuple = tuple(sp.shape for sp in self.domain)
435
436
437
438
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
439

440
        return global_shape
csongor's avatar
csongor committed
441

442
443
    @property
    def dim(self):
444
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
445
446
447
448
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
449

450
451
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
452
453
454
455
456
457
458
459
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
460
        try:
Theo Steininger's avatar
Theo Steininger committed
461
            return reduce(lambda x, y: x * y, volume_tuple)
462
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
463
            return 0
464

Theo Steininger's avatar
Theo Steininger committed
465
    # ---Special unary/binary operations---
466

csongor's avatar
csongor committed
467
468
469
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
470
471
        else:
            dtype = np.dtype(dtype)
472

473
474
        casted_x = x

475
        for ind, sp in enumerate(self.domain):
476
            casted_x = sp.pre_cast(casted_x,
477
478
479
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
480
481

        for ind, sp in enumerate(self.domain):
482
483
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
484

485
        return casted_x
csongor's avatar
csongor committed
486

Theo Steininger's avatar
Theo Steininger committed
487
    def _actual_cast(self, x, dtype=None):
488
        if isinstance(x, Field):
csongor's avatar
csongor committed
489
490
491
492
493
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

494
        return_x = distributed_data_object(
495
496
497
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
498
499
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
500

501
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
502
        copied_val = self.get_val(copy=True)
503
504
505
506
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
507
508
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
509

510
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
511
512
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
513
        else:
Theo Steininger's avatar
Theo Steininger committed
514
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
515

Theo Steininger's avatar
Theo Steininger committed
516
517
518
519
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
520

521
522
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
523

Theo Steininger's avatar
Theo Steininger committed
524
525
526
527
528
529
530
531
532
533
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
534
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
535
536
537
538
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
539
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
540
        return new_field
csongor's avatar
csongor committed
541

Theo Steininger's avatar
Theo Steininger committed
542
543
544
545
546
547
548
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
549
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
550
551
552
553
554
555
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
556
        if inplace:
csongor's avatar
csongor committed
557
558
559
560
            new_field = self
        else:
            new_field = self.copy_empty()

561
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
562

563
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
564
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
565
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
566

567
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
568
569
570
571
572
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
573
574

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
575
576
        return new_field

577
578
579
580
581
    def dot(self, x=None, spaces=None, bare=False):

        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
582
583
584

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
585
            y = self.weight(spaces=spaces, power=-1)
Theo Steininger's avatar
Theo Steininger committed
586
        else:
587
            y = self
Theo Steininger's avatar
Theo Steininger committed
588

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
604

605
    def norm(self, q=2):
csongor's avatar
csongor committed
606
607
608
609
610
611
612
613
614
615
616
617
618
619
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
620
        if q == 2:
621
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
622
        else:
623
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

640
        new_val = self.get_val(copy=False)
Theo Steininger's avatar
Theo Steininger committed
641
        new_val = new_val.conjugate()
642
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
643
644
645

        return work_field

Theo Steininger's avatar
Theo Steininger committed
646
    # ---General unary/contraction methods---
647

Theo Steininger's avatar
Theo Steininger committed
648
649
    def __pos__(self):
        return self.copy()
650

Theo Steininger's avatar
Theo Steininger committed
651
652
653
654
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
655
656
        return return_field

Theo Steininger's avatar
Theo Steininger committed
657
658
659
660
661
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
662

663
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
664
665
666
667
668
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
669

670
        axes_list = tuple(self.domain_axes[sp_index] for sp_index in spaces)
671
672

        try:
Theo Steininger's avatar
Theo Steininger committed
673
            axes_list = reduce(lambda x, y: x+y, axes_list)
674
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
675
            axes_list = ()
csongor's avatar
csongor committed
676

Theo Steininger's avatar
Theo Steininger committed
677
678
679
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
680

Theo Steininger's avatar
Theo Steininger committed
681
682
683
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
684
        else:
Theo Steininger's avatar
Theo Steininger committed
685
686
687
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
688

Theo Steininger's avatar
Theo Steininger committed
689
690
691
692
            return_field = Field(domain=return_domain,
                                 val=data,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
693

694
695
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
696

697
698
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
699

700
701
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
702

703
704
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
705

706
707
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
708

709
710
    def nanmin(self, spaces=None):
        return self._contraction_helper('nanmin', spaces)
csongor's avatar
csongor committed
711

712
713
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
714

715
716
    def nanmax(self, spaces=None):
        return self._contraction_helper('nanmax', spaces)
csongor's avatar
csongor committed
717

718
719
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
720

721
722
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
723

724
725
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
726

Theo Steininger's avatar
Theo Steininger committed
727
    # ---General binary methods---
csongor's avatar
csongor committed
728

Theo Steininger's avatar
Theo Steininger committed
729
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
730
        # if other is a field, make sure that the domains match
731
        if isinstance(other, Field):
Theo Steininger's avatar
Theo Steininger committed
732
733
734
735
736
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
            except AssertionError:
737
738
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
739
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
740

Theo Steininger's avatar
Theo Steininger committed
741
742
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
743
744
745
746

        if inplace:
            working_field = self
        else:
747
            working_field = self.copy_empty(dtype=return_val.dtype)
csongor's avatar
csongor committed
748

Theo Steininger's avatar
Theo Steininger committed
749
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
750
751
752
        return working_field

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
753
        return self._binary_helper(other, op='__add__')
754

755
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
756
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
757
758

    def __iadd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
759
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
760
761

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
762
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
763
764

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
765
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
766
767

    def __isub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
768
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
769
770

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
771
        return self._binary_helper(other, op='__mul__')
772

773
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
774
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
775
776

    def __imul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
777
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
778
779

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
780
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
781
782

    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
783
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
784
785

    def __idiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
786
        return self._binary_helper(other, op='__idiv__', inplace=True)
787

csongor's avatar
csongor committed
788
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
789
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
790
791

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
792
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
793
794

    def __ipow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
795
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
796
797

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
798
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
799
800

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
801
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
802
803
804
805
806

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
807
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
808
809
810
811
812

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
813
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
814
815

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
816
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
817
818

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
819
820
821
822
823
824
825
826
827
828
829
830
831
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
832

Jait Dixit's avatar
Jait Dixit committed
833
834
835
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Theo Steininger's avatar
Theo Steininger committed
836
837
838
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
839
        hdf5_group['num_domain'] = len(self.domain)
Jait Dixit's avatar
Jait Dixit committed
840

Theo Steininger's avatar
Theo Steininger committed
841
        ret_dict = {'val': self.val}
Jait Dixit's avatar
Jait Dixit committed
842
843
844
845
846
847
848

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        return ret_dict

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
849
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
850
851
852
853
854
855
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
856
        for i in range(hdf5_group['num_domain'][()]):
Theo Steininger's avatar
Theo Steininger committed
857
            temp_domain.append(repository.get('s_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
858
859
        new_field.domain = tuple(temp_domain)

Theo Steininger's avatar
Theo Steininger committed
860
861
862
863
864
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
        new_field._val = repository.get('val', hdf5_group)
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy =\
            hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
865
866

        return new_field
867

Theo Steininger's avatar
Theo Steininger committed
868

869
class EmptyField(Field):
csongor's avatar
csongor committed
870
871
    def __init__(self):
        pass