operator.py 6.33 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
from __future__ import absolute_import, division, print_function

from ..compat import *
Philipp Arras's avatar
Philipp Arras committed
4
from ..utilities import NiftyMetaBase
Martin Reinecke's avatar
Martin Reinecke committed
5
6
7
8
9
10
11


class Operator(NiftyMetaBase()):
    """Transforms values living on one domain into values living on another
    domain, and can also provide the Jacobian.
    """

Martin Reinecke's avatar
Martin Reinecke committed
12
    @property
Martin Reinecke's avatar
Martin Reinecke committed
13
14
15
16
    def domain(self):
        """DomainTuple or MultiDomain : the operator's input domain

            The domain on which the Operator's input Field lives."""
Martin Reinecke's avatar
Martin Reinecke committed
17
        return self._domain
Martin Reinecke's avatar
Martin Reinecke committed
18

Martin Reinecke's avatar
Martin Reinecke committed
19
    @property
Martin Reinecke's avatar
Martin Reinecke committed
20
21
22
23
    def target(self):
        """DomainTuple or MultiDomain : the operator's output domain

            The domain on which the Operator's output Field lives."""
Martin Reinecke's avatar
Martin Reinecke committed
24
        return self._target
Martin Reinecke's avatar
Martin Reinecke committed
25

Martin Reinecke's avatar
Martin Reinecke committed
26
27
28
29
30
31
32
33
34
35
36
    @staticmethod
    def _check_domain_equality(dom_op, dom_field):
        if dom_op != dom_field:
            s = "The operator's and field's domains don't match."
            from ..domain_tuple import DomainTuple
            from ..multi_domain import MultiDomain
            if not isinstance(dom_op, [DomainTuple, MultiDomain]):
                s += " Your operator's domain is neither a `DomainTuple`" \
                     " nor a `MultiDomain`."
            raise ValueError(s)

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
37
38
39
40
41
42
43
44
45
46
    def scale(self, factor):
        if factor == 1:
            return self
        from .scaling_operator import ScalingOperator
        return ScalingOperator(factor, self.target)(self)

    def conjugate(self):
        from .simple_linear_operators import ConjugationOperator
        return ConjugationOperator(self.target)(self)

Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
50
51
    @property
    def real(self):
        from .simple_linear_operators import Realizer
        return Realizer(self.target)(self)

Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
52
53
54
    def __neg__(self):
        return self.scale(-1)

Martin Reinecke's avatar
Martin Reinecke committed
55
56
57
    def __matmul__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
58
        return _OpChain.make((self, x))
Martin Reinecke's avatar
Martin Reinecke committed
59

Martin Reinecke's avatar
Martin Reinecke committed
60
61
62
    def __mul__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
63
        return _OpProd(self, x)
Martin Reinecke's avatar
Martin Reinecke committed
64

Philipp Arras's avatar
Philipp Arras committed
65
66
67
    def __add__(self, x):
        if not isinstance(x, Operator):
            return NotImplemented
Martin Reinecke's avatar
Martin Reinecke committed
68
        return _OpSum(self, x)
Philipp Arras's avatar
Philipp Arras committed
69

Martin Reinecke's avatar
Martin Reinecke committed
70
71
    def apply(self, x):
        raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
72

Philipp Arras's avatar
Philipp Arras committed
73
    def force(self, x):
Philipp Arras's avatar
Philipp Arras committed
74
        """Extract correct subset of domain of x and apply operator."""
Philipp Arras's avatar
Philipp Arras committed
75
76
        return self.apply(x.extract(self.domain))

77
78
79
    def _check_input(self, x):
        from ..linearization import Linearization
        d = x.target if isinstance(x, Linearization) else x.domain
Martin Reinecke's avatar
Martin Reinecke committed
80
        self._check_domain_equality(self._domain, d)
81

Martin Reinecke's avatar
Martin Reinecke committed
82
    def __call__(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
83
84
85
        if isinstance(x, Operator):
            return _OpChain.make((self, x))
        return self.apply(x)
Martin Reinecke's avatar
Martin Reinecke committed
86

Martin Reinecke's avatar
Martin Reinecke committed
87
88
89
    def __repr__(self):
        return self.__class__.__name__

Martin Reinecke's avatar
Martin Reinecke committed
90

Martin Reinecke's avatar
Martin Reinecke committed
91
92
93
for f in ["sqrt", "exp", "log", "tanh", "positive_tanh"]:
    def func(f):
        def func2(self):
94
            fa = _FunctionApplier(self.target, f)
Martin Reinecke's avatar
Martin Reinecke committed
95
96
97
98
99
100
101
102
            return _OpChain.make((fa, self))
        return func2
    setattr(Operator, f, func(f))


class _FunctionApplier(Operator):
    def __init__(self, domain, funcname):
        from ..sugar import makeDomain
Martin Reinecke's avatar
Martin Reinecke committed
103
        self._domain = self._target = makeDomain(domain)
Martin Reinecke's avatar
Martin Reinecke committed
104
105
        self._funcname = funcname

Martin Reinecke's avatar
Martin Reinecke committed
106
    def apply(self, x):
107
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
108
109
110
        return getattr(x, self._funcname)()


Philipp Arras's avatar
Philipp Arras committed
111
# FIXME Is this class used except in _OpChain? Can it be merged?
Martin Reinecke's avatar
Martin Reinecke committed
112
113
114
115
116
117
118
119
120
121
class _CombinedOperator(Operator):
    def __init__(self, ops, _callingfrommake=False):
        if not _callingfrommake:
            raise NotImplementedError
        self._ops = tuple(ops)

    @classmethod
    def unpack(cls, ops, res):
        for op in ops:
            if isinstance(op, cls):
Martin Reinecke's avatar
Martin Reinecke committed
122
                res = cls.unpack(op._ops, res)
Martin Reinecke's avatar
Martin Reinecke committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            else:
                res = res + [op]
        return res

    @classmethod
    def make(cls, ops):
        res = cls.unpack(ops, [])
        if len(res) == 1:
            return res[0]
        return cls(res, _callingfrommake=True)


class _OpChain(_CombinedOperator):
    def __init__(self, ops, _callingfrommake=False):
        super(_OpChain, self).__init__(ops, _callingfrommake)
Martin Reinecke's avatar
Martin Reinecke committed
138
139
        self._domain = self._ops[-1].domain
        self._target = self._ops[0].target
Martin Reinecke's avatar
Martin Reinecke committed
140
141
142
        for i in range(1, len(self._ops)):
            if self._ops[i-1].domain != self._ops[i].target:
                raise ValueError("domain mismatch")
Martin Reinecke's avatar
Martin Reinecke committed
143

Martin Reinecke's avatar
Martin Reinecke committed
144
    def apply(self, x):
145
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
146
147
148
149
150
        for op in reversed(self._ops):
            x = op(x)
        return x


Martin Reinecke's avatar
Martin Reinecke committed
151
152
153
154
155
156
157
158
159
class _OpProd(Operator):
    def __init__(self, op1, op2):
        from ..sugar import domain_union
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = op1.target
        if op1.target != op2.target:
            raise ValueError("target mismatch")
        self._op1 = op1
        self._op2 = op2
Martin Reinecke's avatar
Martin Reinecke committed
160

Martin Reinecke's avatar
Martin Reinecke committed
161
    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
162
163
        from ..linearization import Linearization
        from ..sugar import makeOp
164
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
165
        lin = isinstance(x, Linearization)
166
167
168
        v = x._val if lin else x
        v1 = v.extract(self._op1.domain)
        v2 = v.extract(self._op2.domain)
Martin Reinecke's avatar
Martin Reinecke committed
169
        if not lin:
170
            return self._op1(v1) * self._op2(v2)
171
172
173
        wm = x.want_metric
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
174
175
        op = (makeOp(lin1._val)(lin2._jac))._myadd(
            makeOp(lin2._val)(lin1._jac), False)
176
        return lin1.new(lin1._val*lin2._val, op(x.jac))
Martin Reinecke's avatar
Martin Reinecke committed
177
178


Martin Reinecke's avatar
Martin Reinecke committed
179
180
class _OpSum(Operator):
    def __init__(self, op1, op2):
Philipp Arras's avatar
Philipp Arras committed
181
        from ..sugar import domain_union
Martin Reinecke's avatar
Martin Reinecke committed
182
183
184
185
        self._domain = domain_union((op1.domain, op2.domain))
        self._target = domain_union((op1.target, op2.target))
        self._op1 = op1
        self._op2 = op2
Philipp Arras's avatar
Philipp Arras committed
186
187

    def apply(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
188
        from ..linearization import Linearization
189
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
190
191
192
193
        lin = isinstance(x, Linearization)
        v = x._val if lin else x
        v1 = v.extract(self._op1.domain)
        v2 = v.extract(self._op2.domain)
Philipp Arras's avatar
Philipp Arras committed
194
        res = None
Martin Reinecke's avatar
Martin Reinecke committed
195
196
        if not lin:
            return self._op1(v1).unite(self._op2(v2))
197
198
199
        wm = x.want_metric
        lin1 = self._op1(Linearization.make_var(v1, wm))
        lin2 = self._op2(Linearization.make_var(v2, wm))
Martin Reinecke's avatar
Martin Reinecke committed
200
        op = lin1._jac._myadd(lin2._jac, False)
201
        res = lin1.new(lin1._val+lin2._val, op(x.jac))
Martin Reinecke's avatar
Martin Reinecke committed
202
203
        if lin1._metric is not None and lin2._metric is not None:
            res = res.add_metric(lin1._metric + lin2._metric)
Philipp Arras's avatar
Philipp Arras committed
204
        return res