correlated_fields.py 14.2 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

Philipp Arras's avatar
Philipp Arras committed
19
import numpy as np
20

Philipp Arras's avatar
Philipp Arras committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
23
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
24
from ..field import Field
Philipp Arras's avatar
Philipp Arras committed
25
from ..operators.adder import Adder
26
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
27
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
28
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
29
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
30
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
31
32
from ..operators.operator import Operator
from ..operators.simple_linear_operators import VdotOperator, ducktape
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.value_inserter import ValueInserter
34
from ..sugar import from_global_data, full, makeDomain
35
from ..probing import StatCalculator
36

Philipp Arras's avatar
Philipp Arras committed
37

38
39
def _lognormal_moments(mean, sig):
    mean, sig = float(mean), float(sig)
Philipp Arras's avatar
Philipp Arras committed
40
41
42
    assert sig > 0
    logsig = np.sqrt(np.log((sig/mean)**2 + 1))
    logmean = np.log(mean) - logsig**2/2
43
44
    return logmean, logsig

45

46
47
48
def _lognormal_moment_matching(mean, sig, key):
    key = str(key)
    logmean, logsig = _lognormal_moments(mean, sig)
Philipp Arras's avatar
Philipp Arras committed
49
50
    return _normal(logmean, logsig, key).exp()

51

Philipp Arras's avatar
Philipp Arras committed
52
53
54
55
56
def _normal(mean, sig, key):
    return Adder(Field.scalar(mean)) @ (
        sig*ducktape(DomainTuple.scalar_domain(), None, key))


Philipp Arras's avatar
Philipp Arras committed
57
58
59
60
def _log_k_lengths(pspace):
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
61
62
63
64
65
66
67
68
69
70
71
def _logkl(power_space):
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
    logkl = np.insert(logkl, 0, 0)
    return logkl


Philipp Frank's avatar
Philipp Frank committed
72
class _SlopeRemover(EndomorphicOperator):
Philipp Arras's avatar
Philipp Arras committed
73
    def __init__(self, domain):
Philipp Frank's avatar
Philipp Frank committed
74
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
75
76
        assert len(self._domain) == 1
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
77
        logkl = _logkl(self._domain)
78
        self._sc = logkl/float(logkl[-1])
Philipp Frank's avatar
Philipp Frank committed
79
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
80

81
82
    def apply(self, x, mode):
        self._check_input(x, mode)
Philipp Frank's avatar
Philipp Frank committed
83
84
        x = x.to_global_data()
        if mode == self.TIMES:
85
            res = x - x[-1]*self._sc
Philipp Frank's avatar
Philipp Frank committed
86
        else:
87
            res = np.zeros(x.shape, dtype=x.dtype)
Philipp Frank's avatar
Philipp Frank committed
88
89
            res += x
            res[-1] -= (x*self._sc).sum()
90
        return from_global_data(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
91

92

Philipp Arras's avatar
Philipp Arras committed
93
94
95
class _TwoLogIntegrations(LinearOperator):
    def __init__(self, target):
        self._target = makeDomain(target)
Philipp Arras's avatar
Philipp Arras committed
96
97
        assert len(self._target) == 1
        assert isinstance(self._target[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        self._domain = makeDomain(
            UnstructuredDomain((2, self.target.shape[0] - 2)))
        self._capability = self.TIMES | self.ADJOINT_TIMES
        if not isinstance(self._target[0], PowerSpace):
            raise TypeError
        logk_lengths = _log_k_lengths(self._target[0])
        self._logvol = logk_lengths[1:] - logk_lengths[:-1]

    def apply(self, x, mode):
        self._check_input(x, mode)
        if mode == self.TIMES:
            x = x.to_global_data()
            res = np.empty(self._target.shape)
            res[0] = 0
            res[1] = 0
            res[2:] = np.cumsum(x[1])
            res[2:] = (res[2:] + res[1:-1])/2*self._logvol + x[0]
            res[2:] = np.cumsum(res[2:])
            return from_global_data(self._target, res)
        else:
            x = x.to_global_data_rw()
            res = np.zeros(self._domain.shape)
            x[2:] = np.cumsum(x[2:][::-1])[::-1]
            res[0] += x[2:]
            x[2:] *= self._logvol/2.
123
124
            x[1:-1] += x[2:]
            res[1] += np.cumsum(x[2:][::-1])[::-1]
Philipp Arras's avatar
Philipp Arras committed
125
126
127
128
129
130
            return from_global_data(self._domain, res)


class _Normalization(Operator):
    def __init__(self, domain):
        self._domain = self._target = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
131
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
132
        assert isinstance(self._domain[0], PowerSpace)
Philipp Arras's avatar
Philipp Arras committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        hspace = self._domain[0].harmonic_partner
        pd = PowerDistributor(hspace, power_space=self._domain[0])
        cst = pd.adjoint(full(pd.target, 1.)).to_global_data_rw()
        cst[0] = 0
        self._cst = from_global_data(self._domain, cst)
        self._specsum = _SpecialSum(self._domain)

    def apply(self, x):
        self._check_input(x)
        amp = x.exp()
        spec = (2*x).exp()
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
        return self._specsum(self._cst*spec)**(-0.5)*amp


class _SpecialSum(EndomorphicOperator):
    def __init__(self, domain):
        self._domain = makeDomain(domain)
Philipp Arras's avatar
Philipp Arras committed
152
        assert len(self._domain) == 1
Philipp Arras's avatar
Philipp Arras committed
153
154
155
156
157
158
159
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
        return full(self._tgt(mode), x.sum())


160
161
162
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
                 loglogavgslope, key):
Philipp Arras's avatar
Philipp Arras committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        """
        fluctuations > 0
        flexibility > 0
        asperity > 0
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
        assert isinstance(flexibility, Operator)
        assert isinstance(asperity, Operator)
        assert isinstance(loglogavgslope, Operator)
        target = makeDomain(target)
        assert len(target) == 1
        assert isinstance(target[0], PowerSpace)

        twolog = _TwoLogIntegrations(target)
        dt = twolog._logvol
        sc = np.zeros(twolog.domain.shape)
        sc[0] = sc[1] = np.sqrt(dt)
        sc = from_global_data(twolog.domain, sc)
        expander = VdotOperator(sc).adjoint
        sigmasq = expander @ flexibility

        dist = np.zeros(twolog.domain.shape)
        dist[0] += 1.
        dist = from_global_data(twolog.domain, dist)
        scale = VdotOperator(dist).adjoint @ asperity

        shift = np.ones(scale.target.shape)
        shift[0] = dt**2/12.
        shift = from_global_data(scale.target, shift)
        scale = sigmasq*(Adder(shift) @ scale).sqrt()

        smooth = twolog @ (scale*ducktape(scale.target, None, key))
Philipp Arras's avatar
Philipp Arras committed
196
        tg = smooth.target
Philipp Arras's avatar
Philipp Arras committed
197
198
        noslope = _SlopeRemover(tg) @ smooth
        _t = VdotOperator(from_global_data(tg, _logkl(tg))).adjoint
Philipp Arras's avatar
Philipp Arras committed
199
        smoothslope = _t @ loglogavgslope + noslope
Philipp Arras's avatar
Philipp Arras committed
200
201
202
203
204
205
206
207
208

        normal_ampl = _Normalization(target) @ smoothslope
        vol = target[0].harmonic_partner.get_default_codomain().total_volume
        arr = np.zeros(target.shape)
        arr[1:] = vol
        expander = VdotOperator(from_global_data(target, arr)).adjoint
        mask = np.zeros(target.shape)
        mask[0] = vol
        adder = Adder(from_global_data(target, mask))
Philipp Arras's avatar
Philipp Arras committed
209
210
        op = adder @ ((expander @ fluctuations)*normal_ampl)
        self.apply = op.apply
211
        self.fluctuation_amplitude = fluctuations
Philipp Arras's avatar
Philipp Arras committed
212
        self._domain, self._target = op.domain, op.target
Philipp Arras's avatar
Philipp Arras committed
213

214
215
216
217

class CorrelatedFieldMaker:
    def __init__(self):
        self._a = []
218
        self._azm = None
219
220
221
222
223
224
225
226
227
228
229
230

    def add_fluctuations(self,
                         target,
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
                         prefix=''):
Philipp Arras's avatar
Philipp Arras committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        fluctuations_mean = float(fluctuations_mean)
        fluctuations_stddev = float(fluctuations_stddev)
        flexibility_mean = float(flexibility_mean)
        flexibility_stddev = float(flexibility_stddev)
        asperity_mean = float(asperity_mean)
        asperity_stddev = float(asperity_stddev)
        loglogavgslope_mean = float(loglogavgslope_mean)
        loglogavgslope_stddev = float(loglogavgslope_stddev)
        prefix = str(prefix)
        assert fluctuations_stddev > 0
        assert fluctuations_mean > 0
        assert flexibility_stddev > 0
        assert flexibility_mean > 0
        assert asperity_stddev > 0
        assert asperity_mean > 0
        assert loglogavgslope_stddev > 0

        fluct = _lognormal_moment_matching(fluctuations_mean,
                                           fluctuations_stddev,
                                           prefix + 'fluctuations')
        flex = _lognormal_moment_matching(flexibility_mean, flexibility_stddev,
                                          prefix + 'flexibility')
        asp = _lognormal_moment_matching(asperity_mean, asperity_stddev,
                                         prefix + 'asperity')
255
        avgsl = _normal(loglogavgslope_mean, loglogavgslope_stddev,
Philipp Arras's avatar
Philipp Arras committed
256
                        prefix + 'loglogavgslope')
257
258
259
260
261
        self._a.append(
            _Amplitude(target, fluct, flex, asp, avgsl, prefix + 'spectrum'))

    def finalize_from_op(self, zeromode, prefix=''):
        assert isinstance(zeromode, Operator)
262
        self._azm = zeromode
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        hspace = makeDomain([dd.target[0].harmonic_partner for dd in self._a])
        foo = np.ones(hspace.shape)
        zeroind = len(hspace.shape)*(0,)
        foo[zeroind] = 0
        azm = Adder(from_global_data(hspace, foo)) @ ValueInserter(
            hspace, zeroind) @ zeromode

        n_amplitudes = len(self._a)
        ht = HarmonicTransformOperator(hspace, space=0)
        for i in range(1, n_amplitudes):
            ht = HarmonicTransformOperator(ht.target, space=i) @ ht

        pd = PowerDistributor(hspace, self._a[0].target[0], 0)
        for i in range(1, n_amplitudes):
            foo = PowerDistributor(pd.domain, self._a[i].target[0], space=i)
            pd = pd @ foo

        spaces = tuple(range(n_amplitudes))
        a = ContractionOperator(pd.domain, spaces[1:]).adjoint @ self._a[0]
        for i in range(1, n_amplitudes):
            co = ContractionOperator(pd.domain, spaces[:i] + spaces[(i + 1):])
            a = a*(co.adjoint @ self._a[i])
Philipp Arras's avatar
Philipp Arras committed
285

286
        return ht(azm*(pd @ a)*ducktape(hspace, None, prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
287
288
289
290

    def finalize(self,
                 offset_amplitude_mean,
                 offset_amplitude_stddev,
291
                 prefix='',
Philipp Arras's avatar
Philipp Arras committed
292
293
294
295
296
297
298
299
300
                 offset=None):
        """
        offset vs zeromode: volume factor
        """
        offset_amplitude_stddev = float(offset_amplitude_stddev)
        offset_amplitude_mean = float(offset_amplitude_mean)
        assert offset_amplitude_stddev > 0
        assert offset_amplitude_mean > 0
        if offset is not None:
301
            raise NotImplementedError
Philipp Arras's avatar
Philipp Arras committed
302
303
304
305
            offset = float(offset)
        azm = _lognormal_moment_matching(offset_amplitude_mean,
                                         offset_amplitude_stddev,
                                         prefix + 'zeromode')
306
        return self.finalize_from_op(azm, prefix)
Philipp Arras's avatar
Philipp Arras committed
307
308
309

    @property
    def amplitudes(self):
310
        return self._a
311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    @property
    def amplitude_total_offset(self):
        return self._azm

    @property
    def total_fluctuation(self):
        if len(self._a) == 0:
            raise(NotImplementedError)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for a in self._a:
            fl = a.fluctuation_amplitude
            q = q * (Adder(full(fl.target,1.)) @ fl**2)
        return (Adder(full(q.target,-1.)) @ q).sqrt()

    def slice_fluctuation(self,space):
        if len(self._a) == 0:
            raise(NotImplementedError)
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        q = 1.
        for j in range(len(self._a)):
            fl = self._a[j].fluctuation_amplitude
            if j == space:
                q = q * fl**2
            else:
                q = q * (Adder(full(fl.target,1.)) @ fl**2)
        return q.sqrt()
    
    def average_fluctuation(self,space):
        if len(self._a) == 0:
            raise(NotImplementedError)
        assert space < len(self._a)
        if len(self._a) == 1:
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude

    def offset_amplitude_realized(self,samples):
        res = 0.
        for s in samples:
            res += s.mean()**2
        return np.sqrt(res/len(samples))
    
    def total_fluctuation_realized(self,samples):
        res = 0.
        for s in samples:
            res = res + (s-s.mean())**2
        res = res/len(samples)
        return np.sqrt(res.mean())
    
    def average_fluctuation_realized(self,samples,space):
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
        spaces=()
        for i in range(ldom):
            if i != space:
                spaces += (i,)
        res = 0.
        for s in samples:
            r = s.mean(spaces)
            res = res + (r-r.mean())**2
        res = res/len(samples)
        return np.sqrt(res.mean())
    
    def slice_fluctuation_realized(self,samples,space):
        ldom = len(samples[0].domain)
        assert space < ldom
        if ldom == 1:
            return self.total_fluctuation_realized(samples)
        res1 = 0.
        res2 = 0.
        for s in samples:
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
        res = res1.mean() -  res2.mean()
        return np.sqrt(res)

    def stats(self,op,samples):
        sc = StatCalculator()
        for s in samples:
            sc.add(op(s.extract(op.domain)))
        return sc.mean.to_global_data(), sc.var.sqrt().to_global_data()