field.py 29.6 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
4
5
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
6

7
from d2o import distributed_data_object,\
8
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
9

10
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
11

12
from nifty.domain_object import DomainObject
13

14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17
18
from nifty.random import Random

csongor's avatar
csongor committed
19

Jait Dixit's avatar
Jait Dixit committed
20
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
21
    # ---Initialization methods---
22

23
    def __init__(self, domain=None, val=None, dtype=None,
24
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
25

26
        self.domain = self._parse_domain(domain=domain, val=val)
27
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
28

Theo Steininger's avatar
Theo Steininger committed
29
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
30
                                       val=val,
31
                                       domain=self.domain)
32

33
34
35
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
36

37
38
39
40
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
41

42
    def _parse_domain(self, domain, val=None):
43
        if domain is None:
44
45
46
47
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
48
        elif isinstance(domain, DomainObject):
49
            domain = (domain,)
50
51
52
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
53
        for d in domain:
54
            if not isinstance(d, DomainObject):
55
56
                raise TypeError(
                    "Given domain contains something that is not a "
57
                    "DomainObject instance.")
csongor's avatar
csongor committed
58
59
        return domain

Theo Steininger's avatar
Theo Steininger committed
60
61
62
63
64
65
66
67
68
69
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
70

71
    def _infer_dtype(self, dtype, val, domain):
csongor's avatar
csongor committed
72
        if dtype is None:
73
74
75
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
Theo Steininger's avatar
Theo Steininger committed
76
77
78
79
80
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
csongor's avatar
csongor committed
81

Theo Steininger's avatar
Theo Steininger committed
82
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
83

Theo Steininger's avatar
Theo Steininger committed
84
        return dtype
85

86
87
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
88
            if isinstance(val, distributed_data_object):
89
                distribution_strategy = val.distribution_strategy
90
            elif isinstance(val, Field):
91
                distribution_strategy = val.distribution_strategy
92
            else:
93
                self.logger.debug("distribution_strategy set to default!")
94
                distribution_strategy = gc['default_distribution_strategy']
95
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
96
97
98
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
99
        return distribution_strategy
100
101

    # ---Factory methods---
102

103
    @classmethod
104
    def from_random(cls, random_type, domain=None, dtype=None,
105
                    distribution_strategy=None, **kwargs):
106
        # create a initially empty field
107
        f = cls(domain=domain, dtype=dtype,
108
                distribution_strategy=distribution_strategy)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
144
        else:
145
146
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
147

148
        return random_arguments
csongor's avatar
csongor committed
149

150
151
152
153
154
155
156
157
158
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
159
                    "Field has a space in `domain` which is neither "
160
161
162
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
163
164
165
166
167
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
168
169
170
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
171
172

        if len(spaces) == 0:
173
174
            raise ValueError(
                "No space for analysis specified.")
175
        elif len(spaces) > 1:
176
177
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
178
179
180
181

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
182
183
            raise ValueError(
                "The analyzed space must be harmonic.")
184

185
186
187
188
189
190
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

191
192
193
194
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

195
196
197
198
199
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

200
201
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
202
                                  distribution_strategy=distribution_strategy,
203
204
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
205

206
        # extract pindex and rho from power_domain
207
208
        pindex = power_domain.pindex
        rho = power_domain.rho
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
227
228
229
230
231
232
233
234
235
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

236
237
238
        result_field = self.copy_empty(
                   domain=result_domain,
                   distribution_strategy=power_spectrum.distribution_strategy)
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
267
            raise ValueError("pindex's distribution strategy must be "
268
269
270
271
272
273
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
274
                    "A slicing distributor shall not be reshaped to "
275
276
277
278
279
280
281
282
283
284
285
286
287
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

288
289
    def power_synthesize(self, spaces=None, real_signal=True,
                         mean=None, std=None):
290

291
        # assert that all spaces in `self.domain` are either of signal-type or
292
293
        # power_space instances
        for sp in self.domain:
294
            if not sp.harmonic and not isinstance(sp, PowerSpace):
295
                raise AttributeError(
296
                    "Field has a space in `domain` which is neither "
297
298
                    "harmonic nor a PowerSpace.")

299
300
301
302
303
304
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
305
306
307
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
308
309

        if len(spaces) == 0:
310
311
            raise ValueError(
                "No space for synthesis specified.")
312
        elif len(spaces) > 1:
313
314
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
315
316
317
318

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
319
320
            raise ValueError(
                "A PowerSpace is needed for field synthetization.")
321
322
323
324
325
326
327
328
329
330
331
332
333
334

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

335
336
        result_list = [self.__class__.from_random(
                             'normal',
337
338
339
                             mean=mean,
                             std=std,
                             domain=result_domain,
340
341
                             dtype=harmonic_domain.dtype,
                             distribution_strategy=self.distribution_strategy)
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
366
            self.logger.warn(
367
                "The distribution_stragey of pindex does not fit the "
368
369
370
371
372
373
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
374
        full_spec = self.val.get_full_data()
375
376
377
378
379

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
380
        local_rescaler = full_spec[local_blow_up]
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
402

Theo Steininger's avatar
Theo Steininger committed
403
    # ---Properties---
404

Theo Steininger's avatar
Theo Steininger committed
405
    def set_val(self, new_val=None, copy=False):
406
407
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
408
409
            new_val = new_val.copy()
        self._val = new_val
410
        return self
csongor's avatar
csongor committed
411

412
    def get_val(self, copy=False):
413
414
415
        if self._val is None:
            self.set_val(None)

416
        if copy:
Theo Steininger's avatar
Theo Steininger committed
417
            return self._val.copy()
418
        else:
Theo Steininger's avatar
Theo Steininger committed
419
            return self._val
csongor's avatar
csongor committed
420

Theo Steininger's avatar
Theo Steininger committed
421
422
    @property
    def val(self):
423
        return self.get_val(copy=False)
csongor's avatar
csongor committed
424

Theo Steininger's avatar
Theo Steininger committed
425
426
    @val.setter
    def val(self, new_val):
427
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
428

429
430
    @property
    def shape(self):
431
        shape_tuple = tuple(sp.shape for sp in self.domain)
432
433
434
435
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
436

437
        return global_shape
csongor's avatar
csongor committed
438

439
440
    @property
    def dim(self):
441
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
442
443
444
445
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
446

447
448
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
449
450
451
452
453
454
455
456
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
457
        try:
Theo Steininger's avatar
Theo Steininger committed
458
            return reduce(lambda x, y: x * y, volume_tuple)
459
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
460
            return 0
461

Theo Steininger's avatar
Theo Steininger committed
462
    # ---Special unary/binary operations---
463

csongor's avatar
csongor committed
464
465
466
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
467
468
        else:
            dtype = np.dtype(dtype)
469

470
471
        casted_x = x

472
        for ind, sp in enumerate(self.domain):
473
            casted_x = sp.pre_cast(casted_x,
474
475
476
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
477
478

        for ind, sp in enumerate(self.domain):
479
480
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
481

482
        return casted_x
csongor's avatar
csongor committed
483

Theo Steininger's avatar
Theo Steininger committed
484
    def _actual_cast(self, x, dtype=None):
485
        if isinstance(x, Field):
csongor's avatar
csongor committed
486
487
488
489
490
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

491
        return_x = distributed_data_object(
492
493
494
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
495
496
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
497

498
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
499
        copied_val = self.get_val(copy=True)
500
501
502
503
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
504
505
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
506

507
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
508
509
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
510
        else:
Theo Steininger's avatar
Theo Steininger committed
511
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
512

Theo Steininger's avatar
Theo Steininger committed
513
514
515
516
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
517

518
519
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
520

Theo Steininger's avatar
Theo Steininger committed
521
522
523
524
525
526
527
528
529
530
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
531
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
532
533
534
535
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
536
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
537
        return new_field
csongor's avatar
csongor committed
538

Theo Steininger's avatar
Theo Steininger committed
539
540
541
542
543
544
545
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
546
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
547
548
549
550
551
552
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
553
        if inplace:
csongor's avatar
csongor committed
554
555
556
557
            new_field = self
        else:
            new_field = self.copy_empty()

558
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
559

560
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
561
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
562
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
563

564
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
565
566
567
568
569
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
570
571

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
572
573
        return new_field

574
575
576
577
578
    def dot(self, x=None, spaces=None, bare=False):

        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
579
580
581

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
582
            y = self
583
584
        else:
            y = self.weight(power=1)
Theo Steininger's avatar
Theo Steininger committed
585

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
601

602
    def norm(self, q=2):
csongor's avatar
csongor committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
617
        if q == 2:
618
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
619
        else:
620
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

637
        new_val = self.get_val(copy=False)
Theo Steininger's avatar
Theo Steininger committed
638
        new_val = new_val.conjugate()
639
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
640
641
642

        return work_field

Theo Steininger's avatar
Theo Steininger committed
643
    # ---General unary/contraction methods---
644

Theo Steininger's avatar
Theo Steininger committed
645
646
    def __pos__(self):
        return self.copy()
647

Theo Steininger's avatar
Theo Steininger committed
648
649
650
651
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
652
653
        return return_field

Theo Steininger's avatar
Theo Steininger committed
654
655
656
657
658
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
659

660
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
661
662
663
664
665
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
666

667
        axes_list = tuple(self.domain_axes[sp_index] for sp_index in spaces)
668
669

        try:
Theo Steininger's avatar
Theo Steininger committed
670
            axes_list = reduce(lambda x, y: x+y, axes_list)
671
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
672
            axes_list = ()
csongor's avatar
csongor committed
673

Theo Steininger's avatar
Theo Steininger committed
674
675
676
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
677

Theo Steininger's avatar
Theo Steininger committed
678
679
680
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
681
        else:
Theo Steininger's avatar
Theo Steininger committed
682
683
684
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
685

Theo Steininger's avatar
Theo Steininger committed
686
687
688
689
            return_field = Field(domain=return_domain,
                                 val=data,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
690

691
692
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
693

694
695
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
696

697
698
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
699

700
701
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
702

703
704
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
705

706
707
    def nanmin(self, spaces=None):
        return self._contraction_helper('nanmin', spaces)
csongor's avatar
csongor committed
708

709
710
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
711

712
713
    def nanmax(self, spaces=None):
        return self._contraction_helper('nanmax', spaces)
csongor's avatar
csongor committed
714

715
716
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
717

718
719
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
720

721
722
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
723

Theo Steininger's avatar
Theo Steininger committed
724
    # ---General binary methods---
csongor's avatar
csongor committed
725

Theo Steininger's avatar
Theo Steininger committed
726
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
727
        # if other is a field, make sure that the domains match
728
        if isinstance(other, Field):
Theo Steininger's avatar
Theo Steininger committed
729
730
731
732
733
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
            except AssertionError:
734
735
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
736
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
737

Theo Steininger's avatar
Theo Steininger committed
738
739
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
740
741
742
743

        if inplace:
            working_field = self
        else:
744
            working_field = self.copy_empty(dtype=return_val.dtype)
csongor's avatar
csongor committed
745

Theo Steininger's avatar
Theo Steininger committed
746
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
747
748
749
        return working_field

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
750
        return self._binary_helper(other, op='__add__')
751

752
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
753
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
754
755

    def __iadd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
756
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
757
758

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
759
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
760
761

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
762
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
763
764

    def __isub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
765
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
766
767

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
768
        return self._binary_helper(other, op='__mul__')
769

770
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
771
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
772
773

    def __imul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
774
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
775
776

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
777
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
778
779

    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
780
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
781
782

    def __idiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
783
        return self._binary_helper(other, op='__idiv__', inplace=True)
784

csongor's avatar
csongor committed
785
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
786
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
787
788

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
789
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
790
791

    def __ipow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
792
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
793
794

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
795
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
796
797

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
798
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
799
800
801
802
803

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
804
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
805
806
807
808
809

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
810
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
811
812

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
813
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
814
815

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
816
817
818
819
820
821
822
823
824
825
826
827
828
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
829

Jait Dixit's avatar
Jait Dixit committed
830
831
832
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Theo Steininger's avatar
Theo Steininger committed
833
834
835
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
836
        hdf5_group['num_domain'] = len(self.domain)
Jait Dixit's avatar
Jait Dixit committed
837

Theo Steininger's avatar
Theo Steininger committed
838
        ret_dict = {'val': self.val}
Jait Dixit's avatar
Jait Dixit committed
839
840
841
842
843
844
845

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        return ret_dict

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
846
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
847
848
849
850
851
852
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
853
        for i in range(hdf5_group['num_domain'][()]):
Theo Steininger's avatar
Theo Steininger committed
854
            temp_domain.append(repository.get('s_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
855
856
        new_field.domain = tuple(temp_domain)

Theo Steininger's avatar
Theo Steininger committed
857
858
859
860
861
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
        new_field._val = repository.get('val', hdf5_group)
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy =\
            hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
862
863

        return new_field
864

Theo Steininger's avatar
Theo Steininger committed
865

866
class EmptyField(Field):
csongor's avatar
csongor committed
867
868
    def __init__(self):
        pass