diagonal_operator.py 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18
19
20
21
22
23

import numpy as np

from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES

24
from nifty.config import nifty_configuration as gc
25
26
27
28
29
from nifty.field import Field
from nifty.operators.endomorphic_operator import EndomorphicOperator


class DiagonalOperator(EndomorphicOperator):
Theo Steininger's avatar
Theo Steininger committed
30
31
32
33
34
    """ NIFTY class for diagonal operators.

    The NIFTY DiagonalOperator class is a subclass derived from the
    EndomorphicOperator. It multiplies an input field pixel-wise with its
    diagonal.
35

36
37
38

    Parameters
    ----------
Theo Steininger's avatar
Theo Steininger committed
39
40
41
    domain : tuple of DomainObjects, i.e. Spaces and FieldTypes
        The domain on which the Operator's input Field lives.
    diagonal : {scalar, list, array, Field, d2o-object}
42
43
        The diagonal entries of the operator.
    bare : boolean
Theo Steininger's avatar
Theo Steininger committed
44
45
        Indicates whether the input for the diagonal is bare or not
        (default: False).
46
47
48
49
50
    copy : boolean
        Internal copy of the diagonal (default: True)
    distribution_strategy : string
        setting the prober distribution_strategy of the
        diagonal (default : None). In case diagonal is d2o-object or Field,
Theo Steininger's avatar
Theo Steininger committed
51
        their distribution_strategy is used as a fallback.
52
53
54
    default_spaces : tuple of ints *optional*
        Defines on which space(s) of a given field the Operator acts by
        default (default: None)
55
56
57

    Attributes
    ----------
58
59
60
61
62
63
64
65
66
    domain : tuple of DomainObjects, i.e. Spaces and FieldTypes
        The domain on which the Operator's input Field lives.
    target : tuple of DomainObjects, i.e. Spaces and FieldTypes
        The domain in which the outcome of the operator lives. As the Operator
        is endomorphic this is the same as its domain.
    unitary : boolean
        Indicates whether the Operator is unitary or not.
    self_adjoint : boolean
        Indicates whether the operator is self_adjoint or not.
67
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
68
69
        Defines the distribution_strategy of the distributed_data_object
        in which the diagonal entries are stored in.
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    Raises
    ------

    Notes
    -----
    The ambiguity of bare or non-bare diagonal entries is based on the choice
    of a matrix representation of the operator in question. The naive choice
    of absorbing the volume weights into the matrix leads to a matrix-vector
    calculus with the non-bare entries which seems intuitive, though.
    The choice of keeping matrix entries and volume weights separate
    deals with the bare entries that allow for correct interpretation
    of the matrix entries; e.g., as variance in case of an covariance operator.

    Examples
    --------
    >>> x_space = RGSpace(5)
Theo Steininger's avatar
Theo Steininger committed
87
88
    >>> D = DiagonalOperator(x_space, diagonal=[1., 3., 2., 4., 6.])
    >>> f = Field(x_space, val=2.)
89
90
91
    >>> res = D.times(f)
    >>> res.val
    <distributed_data_object>
Theo Steininger's avatar
Theo Steininger committed
92
    array([ 2.,  6.,  4.,  8.,  12.])
93
94
95
96
97
98
99

    See Also
    --------
    EndomorphicOperator

    """

100
101
    # ---Overwritten properties and methods---

102
103
104
105
    def __init__(self, domain=(), diagonal=None, bare=False, copy=True,
                 distribution_strategy=None, default_spaces=None):
        super(DiagonalOperator, self).__init__(default_spaces)

106
        self._domain = self._parse_domain(domain)
107

108
        if distribution_strategy is None:
109
            if isinstance(diagonal, distributed_data_object):
110
                distribution_strategy = diagonal.distribution_strategy
111
            elif isinstance(diagonal, Field):
112
                distribution_strategy = diagonal.distribution_strategy
113

114
        self._distribution_strategy = self._parse_distribution_strategy(
115
116
                               distribution_strategy=distribution_strategy,
                               val=diagonal)
117
118
119

        self.set_diagonal(diagonal=diagonal, bare=bare, copy=copy)

120
121
    def _times(self, x, spaces):
        return self._times_helper(x, spaces, operation=lambda z: z.__mul__)
122

123
124
    def _adjoint_times(self, x, spaces):
        return self._times_helper(x, spaces,
125
                                  operation=lambda z: z.adjoint().__mul__)
126

127
128
    def _inverse_times(self, x, spaces):
        return self._times_helper(x, spaces, operation=lambda z: z.__rdiv__)
129

130
131
    def _adjoint_inverse_times(self, x, spaces):
        return self._times_helper(x, spaces,
132
                                  operation=lambda z: z.adjoint().__rdiv__)
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def diagonal(self, bare=False, copy=True):
        """ Returns the diagonal of the Operator.

        Parameters
        ----------
        bare : boolean
            Whether the returned Field values should be bare or not.
        copy : boolean
            Whether the returned Field should be copied or not.

        Returns
        -------
        out : Field
            The diagonal of the Operator.

        """
        if bare:
            diagonal = self._diagonal.weight(power=-1)
        elif copy:
            diagonal = self._diagonal.copy()
        else:
            diagonal = self._diagonal
        return diagonal

    def inverse_diagonal(self, bare=False):
        """ Returns the inverse-diagonal of the operator.

        Parameters
        ----------
        bare : boolean
            Whether the returned Field values should be bare or not.

        Returns
        -------
        out : Field
            The inverse of the diagonal of the Operator.

        """
        return 1./self.diagonal(bare=bare, copy=False)

174
175
    # ---Mandatory properties and methods---

176
177
178
179
    @property
    def domain(self):
        return self._domain

180
    @property
Martin Reinecke's avatar
Martin Reinecke committed
181
182
183
184
    def self_adjoint(self):
        if self._self_adjoint is None:
            self._self_adjoint = (self._diagonal.val.imag == 0).all()
        return self._self_adjoint
185
186
187

    @property
    def unitary(self):
188
189
190
        if self._unitary is None:
            self._unitary = (self._diagonal.val *
                             self._diagonal.val.conjugate() == 1).all()
191
192
193
194
195
        return self._unitary

    # ---Added properties and methods---

    @property
196
    def distribution_strategy(self):
197
198
199
        """
        distribution_strategy : string
            Defines the way how the diagonal operator is distributed
Theo Steininger's avatar
Theo Steininger committed
200
201
            among the nodes. Available distribution_strategies are:
            'fftw', 'equal' and 'not'.
202
203
204

        Notes :
            https://arxiv.org/abs/1606.05385
Theo Steininger's avatar
Theo Steininger committed
205

206
        """
Theo Steininger's avatar
Theo Steininger committed
207

208
        return self._distribution_strategy
209

210
211
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
212
            if isinstance(val, distributed_data_object):
213
                distribution_strategy = val.distribution_strategy
214
            elif isinstance(val, Field):
215
                distribution_strategy = val.distribution_strategy
216
            else:
217
                self.logger.info("Datamodel set to default!")
218
219
                distribution_strategy = gc['default_distribution_strategy']
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['all']:
220
221
            raise ValueError(
                    "Invalid distribution_strategy!")
222
        return distribution_strategy
223
224

    def set_diagonal(self, diagonal, bare=False, copy=True):
225
226
227
228
        """ Sets the diagonal of the Operator.

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
229
        diagonal : {scalar, list, array, Field, d2o-object}
230
231
            The diagonal entries of the operator.
        bare : boolean
Theo Steininger's avatar
Theo Steininger committed
232
233
            Indicates whether the input for the diagonal is bare or not
            (default: False).
234
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
235
            Specifies if a copy of the input shall be made (default: True).
236
237
238

        """

239
240
241
        # use the casting functionality from Field to process `diagonal`
        f = Field(domain=self.domain,
                  val=diagonal,
242
                  distribution_strategy=self.distribution_strategy,
243
244
                  copy=copy)

245
        # weight if the given values were `bare` is True
246
        # do inverse weightening if the other way around
247
        if bare:
248
249
250
            # If `copy` is True, we won't change external data by weightening
            # Otherwise, inplace weightening would change the external field
            f.weight(inplace=copy)
251

Martin Reinecke's avatar
Martin Reinecke committed
252
253
        # Reset the self_adjoint property:
        self._self_adjoint = None
254

255
256
        # Reset the unitarity property
        self._unitary = None
257
258
259

        # store the diagonal-field
        self._diagonal = f
260

261
262
    def _times_helper(self, x, spaces, operation):
        # if the domain matches directly
263
        # -> multiply the fields directly
264
        if x.domain == self.domain:
265
266
267
268
269
270
271
            # here the actual multiplication takes place
            return operation(self.diagonal(copy=False))(x)

        # if the distribution_strategy of self is sub-slice compatible to
        # the one of x, reshape the local data of self and apply it directly
        active_axes = []
        if spaces is None:
272
            active_axes = range(len(x.shape))
273
274
275
276
277
278
279
280
281
282
        else:
            for space_index in spaces:
                active_axes += x.domain_axes[space_index]

        axes_local_distribution_strategy = \
            x.val.get_axes_local_distribution_strategy(active_axes)
        if axes_local_distribution_strategy == self.distribution_strategy:
            local_diagonal = self._diagonal.val.get_local_data(copy=False)
        else:
            # create an array that is sub-slice compatible
283
284
            self.logger.warn("The input field is not sub-slice compatible to "
                             "the distribution strategy of the operator.")
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            redistr_diagonal_val = self._diagonal.val.copy(
                distribution_strategy=axes_local_distribution_strategy)
            local_diagonal = redistr_diagonal_val.get_local_data(copy=False)

        reshaper = [x.shape[i] if i in active_axes else 1
                    for i in xrange(len(x.shape))]
        reshaped_local_diagonal = np.reshape(local_diagonal, reshaper)

        # here the actual multiplication takes place
        local_result = operation(reshaped_local_diagonal)(
                           x.val.get_local_data(copy=False))

        result_field = x.copy_empty(dtype=local_result.dtype)
        result_field.val.set_local_data(local_result, copy=False)
        return result_field