field.py 49.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20
from builtins import zip
Martin Reinecke's avatar
Martin Reinecke committed
21
#from builtins import str
Martin Reinecke's avatar
Martin Reinecke committed
22
from builtins import range
23

24
import ast
csongor's avatar
csongor committed
25
26
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
27
28
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
29

30
from d2o import distributed_data_object,\
31
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
32

Martin Reinecke's avatar
Martin Reinecke committed
33
from .config import nifty_configuration as gc
csongor's avatar
csongor committed
34

Martin Reinecke's avatar
Martin Reinecke committed
35
from .domain_object import DomainObject
36

Martin Reinecke's avatar
Martin Reinecke committed
37
from .spaces.power_space import PowerSpace
csongor's avatar
csongor committed
38

Martin Reinecke's avatar
Martin Reinecke committed
39
40
from . import nifty_utilities as utilities
from .random import Random
Martin Reinecke's avatar
Martin Reinecke committed
41
from functools import reduce
42

csongor's avatar
csongor committed
43

Jait Dixit's avatar
Jait Dixit committed
44
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
45
46
47
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
48
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
49
50
    In addition Field has methods to work with power-spectra.

51
52
53
54
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
55
        LMSpace or PowerSpace. It might also be a FieldArray, which is
56
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
57

58
59
60
61
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
62

63
64
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
65

66
67
68
69
70
71
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
72

73
74
75
76
77
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
78

79
80
81
82
83
84
85
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
86
87
        Name of the used distribution_strategy.

88
89
90
91
92
93
94
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
95

96
97
98
99
100
101
102
103
104
105
106
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
107

108
109
110
111
112
    See Also
    --------
    distributed_data_object

    """
113

Theo Steininger's avatar
Theo Steininger committed
114
    # ---Initialization methods---
115

116
    def __init__(self, domain=None, val=None, dtype=None,
117
                 distribution_strategy=None, copy=False):
118
        self.domain = self._parse_domain(domain=domain, val=val)
119
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
120

Theo Steininger's avatar
Theo Steininger committed
121
        self.dtype = self._infer_dtype(dtype=dtype,
122
                                       val=val)
123

124
125
126
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
127

128
129
130
131
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
132

133
    def _parse_domain(self, domain, val=None):
134
        if domain is None:
135
136
137
138
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
139
        elif isinstance(domain, DomainObject):
140
            domain = (domain,)
141
142
143
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
144
        for d in domain:
145
            if not isinstance(d, DomainObject):
146
147
                raise TypeError(
                    "Given domain contains something that is not a "
148
                    "DomainObject instance.")
csongor's avatar
csongor committed
149
150
        return domain

Theo Steininger's avatar
Theo Steininger committed
151
152
153
154
155
156
157
158
159
160
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
161

162
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
163
        if dtype is None:
164
            try:
165
                dtype = val.dtype
166
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
167
168
169
                try:
                    if val is None:
                        raise TypeError
170
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
171
                except(TypeError):
172
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
173
        else:
174
            dtype = np.dtype(dtype)
175

176
177
        dtype = np.result_type(dtype, np.float)

Theo Steininger's avatar
Theo Steininger committed
178
        return dtype
179

180
181
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
182
            if isinstance(val, distributed_data_object):
183
                distribution_strategy = val.distribution_strategy
184
            elif isinstance(val, Field):
185
                distribution_strategy = val.distribution_strategy
186
            else:
187
                self.logger.debug("distribution_strategy set to default!")
188
                distribution_strategy = gc['default_distribution_strategy']
189
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
190
191
192
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
193
        return distribution_strategy
194
195

    # ---Factory methods---
196

197
    @classmethod
198
    def from_random(cls, random_type, domain=None, dtype=None,
199
                    distribution_strategy=None, **kwargs):
200
201
202
203
204
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
205

206
207
208
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
209

210
211
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
212

213
214
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
215

216
217
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
218

219
220
221
222
223
224
225
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
226
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
227

228
229

        """
Theo Steininger's avatar
Theo Steininger committed
230

231
        # create a initially empty field
232
        f = cls(domain=domain, dtype=dtype,
233
                distribution_strategy=distribution_strategy)
234
235
236
237
238
239
240

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
241
        # extract the distributed_data_object from f and apply the appropriate
242
243
244
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
245
246
247
248
249
250
251
252
253

        comm = sample.comm
        size = comm.size
        if (sample.distribution_strategy in DISTRIBUTION_STRATEGIES['not'] and
                size > 1):
            seed = np.random.randint(10000000)
            seed = comm.bcast(seed, root=0)
            np.random.seed(seed)

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
277
        else:
278
279
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
280

281
        return random_arguments
csongor's avatar
csongor committed
282

283
284
    # ---Powerspectral methods---

Martin Reinecke's avatar
Martin Reinecke committed
285
    def power_analyze(self, spaces=None, logarithmic=None, nbin=None,
286
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
287
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
288

Theo Steininger's avatar
Theo Steininger committed
289
290
291
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
292
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
293
        field, corresponding to the square root of the power spectrum.
294
295
296

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
297
298
299
300
301
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
Martin Reinecke's avatar
Martin Reinecke committed
302
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
303
304
305
306
307
308
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
309
310
            Overrides nbin and logarithmic.
            if binbounds==None : bins are inferred.
311
312
313
314
315
316
317
318
319
320
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
321

322
323
324
325
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
326
327
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
328
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
329

330
331
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
332
        out : Field
333
334
335
336
337
338
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
339

340
        """
Theo Steininger's avatar
Theo Steininger committed
341

Theo Steininger's avatar
Theo Steininger committed
342
        # check if all spaces in `self.domain` are either harmonic or
343
344
345
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
346
                self.logger.info(
347
                    "Field has a space in `domain` which is neither "
348
349
350
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
351
352
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
353
            spaces = list(range(len(self.domain)))
354
355

        if len(spaces) == 0:
356
357
            raise ValueError(
                "No space for analysis specified.")
358

359
360
361
362
363
364
365
366
367
368
369
370
371
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
372
373

        for space_index in spaces:
374
375
            parts = [self._single_power_analyze(
                                work_field=part,
376
377
378
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
379
380
                                binbounds=binbounds)
                     for part in parts]
381

382
383
384
385
386
387
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
388
389
390

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
391
                              binbounds):
392

393
        if not work_field.domain[space_index].harmonic:
394
395
            raise ValueError(
                "The analyzed space must be harmonic.")
396

397
398
399
400
401
402
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

403
        distribution_strategy = \
404
405
            work_field.val.get_axes_local_distribution_strategy(
                work_field.domain_axes[space_index])
406

407
        harmonic_domain = work_field.domain[space_index]
408
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
409
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
410
411
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
412
413
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
Martin Reinecke's avatar
Martin Reinecke committed
414
                                pdomain=power_domain,
415
                                axes=work_field.domain_axes[space_index])
416
417

        # create the result field and put power_spectrum into it
418
        result_domain = list(work_field.domain)
419
        result_domain[space_index] = power_domain
420
        result_dtype = power_spectrum.dtype
421

422
        result_field = work_field.copy_empty(
423
                   domain=result_domain,
424
                   dtype=result_dtype,
425
                   distribution_strategy=power_spectrum.distribution_strategy)
426
427
428
429
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

430
    @classmethod
Martin Reinecke's avatar
Martin Reinecke committed
431
    def _calculate_power_spectrum(cls, field_val, pdomain, axes=None):
432

Martin Reinecke's avatar
Martin Reinecke committed
433
434
435
        pindex = pdomain.pindex
        # MR FIXME: how about iterating over slices, instead of replicating
        # pindex? Would save memory and probably isn't slower.
436
        if axes is not None:
437
438
439
440
441
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            target_strategy=field_val.distribution_strategy,
                            axes=axes)
Theo Steininger's avatar
Theo Steininger committed
442

443
        power_spectrum = pindex.bincount(weights=field_val,
444
                                         axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
445
        rho = pdomain.rho
446
447
448
449
450
451
452
453
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

454
455
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
456
457
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
458
            raise ValueError("pindex's distribution strategy must be "
459
460
461
462
463
464
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
465
                    "A slicing distributor shall not be reshaped to "
466
467
                    "something non-sliced.")

Theo Steininger's avatar
Theo Steininger committed
468
        semiscaled_local_shape = [1, ] * len(target_shape)
Theo Steininger's avatar
Theo Steininger committed
469
470
        for i in range(len(axes)):
            semiscaled_local_shape[axes[i]] = pindex.local_shape[i]
471
        local_data = pindex.get_local_data(copy=False)
Theo Steininger's avatar
Theo Steininger committed
472
        semiscaled_local_data = local_data.reshape(semiscaled_local_shape)
473
474
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
Theo Steininger's avatar
Theo Steininger committed
475
        result_obj.data[:] = semiscaled_local_data
476
477
478

        return result_obj

479
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
480
                         mean=None, std=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
481
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
482

Theo Steininger's avatar
Theo Steininger committed
483
        This method draws a Gaussian random field in the harmonic partner
Martin Reinecke's avatar
typos    
Martin Reinecke committed
484
        domain of this field's domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
485

486
487
488
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
489
490
491
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
492
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
493
494
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
495
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
496
497
498
499
500
501
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
502
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
503
504
505
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
506

507
508
509
510
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
511
            stored in the `spaces` in `self`.
512

Theo Steininger's avatar
Theo Steininger committed
513
514
515
516
517
518
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

519
520
521
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
522
523
524
525
526

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

527
        """
Theo Steininger's avatar
Theo Steininger committed
528

529
530
531
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
532
        if spaces is None:
Martin Reinecke's avatar
Martin Reinecke committed
533
            spaces = list(range(len(self.domain)))
Theo Steininger's avatar
Theo Steininger committed
534

535
536
537
538
539
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
540
541
542

        # create the result domain
        result_domain = list(self.domain)
543
544
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
545
            harmonic_domain = power_space.harmonic_partner
546
            result_domain[power_space_index] = harmonic_domain
547
548
549

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
550
        if real_power:
551
            result_list = [None]
552
553
        else:
            result_list = [None, None]
554

555
556
557
        if distribution_strategy is None:
            distribution_strategy = gc['default_distribution_strategy']

558
559
        result_list = [self.__class__.from_random(
                             'normal',
560
561
562
                             mean=mean,
                             std=std,
                             domain=result_domain,
563
                             dtype=np.complex,
564
                             distribution_strategy=distribution_strategy)
565
566
567
568
569
570
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
571
572

        spec = self.val.get_full_data()
573
574
        spec = np.sqrt(spec)

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

591
        if real_signal:
592
            result_val_list = [self._hermitian_decomposition(
593
594
595
596
597
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
598
                               for result_val in result_val_list]
599
600
601
602
603
604
605

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
606
607
608
            if not issubclass(result_val_list[0].dtype.type,
                              np.complexfloating):
                result = result.real
609
        else:
610
611
612
613
            result = result_list[0] + 1j*result_list[1]

        return result

614
    @staticmethod
615
616
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
617
618
619
620
621
622

        flipped_val = val
        for space in spaces:
            flipped_val = domain[space].hermitianize_inverter(
                                                    x=flipped_val,
                                                    axes=domain_axes[space])
623
624
        # if no flips at all where performed `h` is a real field.
        # if all spaces use the default implementation of doing nothing when
Theo Steininger's avatar
Theo Steininger committed
625
        # no flips are applied, one can use `is` to infer this case.
626
627
628
629
630
631
632
633

        if flipped_val is val:
            h = flipped_val.real
            a = 1j * flipped_val.imag
        else:
            flipped_val = flipped_val.conjugate()
            h = (val + flipped_val)/2.
            a = val - h
634
635

        # correct variance
636
        if preserve_gaussian_variance:
Martin Reinecke's avatar
Martin Reinecke committed
637
638
            assert issubclass(val.dtype.type, np.complexfloating),\
                    "complex input field is needed here"
639
640
641
            h *= np.sqrt(2)
            a *= np.sqrt(2)

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
#            The code below should not be needed in practice, since it would
#            only ever be called when hermitianizing a purely real field.
#            However it might be of educational use and keep us from forgetting
#            how these things are done ...

#            if not issubclass(val.dtype.type, np.complexfloating):
#                # in principle one must not correct the variance for the fixed
#                # points of the hermitianization. However, for a complex field
#                # the input field loses half of its power at its fixed points
#                # in the `hermitian` part. Hence, here a factor of sqrt(2) is
#                # also necessary!
#                # => The hermitianization can be done on a space level since
#                # either nothing must be done (LMSpace) or ALL points need a
#                # factor of sqrt(2)
#                # => use the preserve_gaussian_variance flag in the
#                # hermitian_decomposition method above.
#
#                # This code is for educational purposes:
#                fixed_points = [domain[i].hermitian_fixed_points()
#                                for i in spaces]
#                fixed_points = [[fp] if fp is None else fp
#                                for fp in fixed_points]
#
#                for product_point in itertools.product(*fixed_points):
#                    slice_object = np.array((slice(None), )*len(val.shape),
#                                            dtype=np.object)
#                    for i, sp in enumerate(spaces):
#                        point_component = product_point[i]
#                        if point_component is None:
#                            point_component = slice(None)
#                        slice_object[list(domain_axes[sp])] = point_component
#
#                    slice_object = tuple(slice_object)
#                    h[slice_object] /= np.sqrt(2)
#                    a[slice_object] /= np.sqrt(2)

678
679
        return (h, a)

680
681
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
682
683
684

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
685
        pindex = power_space.pindex
686
687
688
689
690
691
692
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
693
            raise AttributeError(
Martin Reinecke's avatar
Martin Reinecke committed
694
                "The distribution_strategy of pindex does not fit the "
695
696
697
698
699
700
701
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

702
703
704
705
706
        local_blow_up = [slice(None)]*len(spec.shape)
        # it is important to count from behind, since spec potentially grows
        # with every iteration
        index = self.domain_axes[power_space_index][0]-len(self.shape)
        local_blow_up[index] = local_pindex
707
        # here, the power_spectrum is distributed into the new shape
708
709
        local_rescaler = spec[local_blow_up]
        return local_rescaler
710

Theo Steininger's avatar
Theo Steininger committed
711
    # ---Properties---
712

Theo Steininger's avatar
Theo Steininger committed
713
    def set_val(self, new_val=None, copy=False):
Martin Reinecke's avatar
typos    
Martin Reinecke committed
714
        """ Sets the field's distributed_data_object.
715
716
717

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
718
        new_val : scalar, array-like, Field, None *optional*
719
720
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
721

722
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
723
724
            If False, Field tries to not copy the input data but use it
            directly.
725
726
727
728
729
730
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
731

732
733
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
734
735
            new_val = new_val.copy()
        self._val = new_val
736
        return self
csongor's avatar
csongor committed
737

738
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
739
        """ Returns the distributed_data_object associated with this Field.
740
741
742
743

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
744
745
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
746

747
748
749
750
751
752
753
754
755
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
756

757
758
759
        if self._val is None:
            self.set_val(None)

760
        if copy:
Theo Steininger's avatar
Theo Steininger committed
761
            return self._val.copy()
762
        else:
Theo Steininger's avatar
Theo Steininger committed
763
            return self._val
csongor's avatar
csongor committed
764

Theo Steininger's avatar
Theo Steininger committed
765
766
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
767
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
768

769
770
771
772
773
774
775
776
777
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
778

779
        return self.get_val(copy=False)
csongor's avatar
csongor committed
780

Theo Steininger's avatar
Theo Steininger committed
781
782
    @val.setter
    def val(self, new_val):
783
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
784

785
786
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
787
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
788

789
790
791
        Returns
        -------
        out : tuple
Martin Reinecke's avatar
Martin Reinecke committed
792
            The output object. The tuple contains the dimensions of the spaces
793
794
795
796
797
798
799
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
800
801
802
803
804
805
806
807
        if not hasattr(self, '_shape'):
            shape_tuple = tuple(sp.shape for sp in self.domain)
            try:
                global_shape = reduce(lambda x, y: x + y, shape_tuple)
            except TypeError:
                global_shape = ()
            self._shape = global_shape
        return self._shape
csongor's avatar
csongor committed
808

809
810
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
811
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
812

Theo Steininger's avatar
Theo Steininger committed
813
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
814

815
816
817
818
819
820
821
822
823
824
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
825

826
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
827
        try:
Martin Reinecke's avatar
Martin Reinecke committed
828
            return int(reduce(lambda x, y: x * y, dim_tuple))
Theo Steininger's avatar
Theo Steininger committed
829
830
        except TypeError:
            return 0
csongor's avatar
csongor committed
831

832
833
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
834
835
836
837
838
839
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
840
841
842
843
844
845
846
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
847
848
849
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
850
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
851
        try:
Theo Steininger's avatar
Theo Steininger committed
852
            return reduce(lambda x, y: x * y, volume_tuple)
853
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
854
            return 0.
855

Theo Steininger's avatar
Theo Steininger committed
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
    @property
    def real(self):
        """ The real part of the field (data is not copied).
        """
        real_part = self.val.real
        result = self.copy_empty(dtype=real_part.dtype)
        result.set_val(new_val=real_part, copy=False)
        return result

    @property
    def imag(self):
        """ The imaginary part of the field (data is not copied).
        """
        real_part = self.val.imag
        result = self.copy_empty(dtype=real_part.dtype)
        result.set_val(new_val=real_part, copy=False)
        return result

Theo Steininger's avatar
Theo Steininger committed
874
    # ---Special unary/binary operations---
875

csongor's avatar
csongor committed
876
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
877
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
878

879
880
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
881
        x : scalar, d2o, Field, array_like
882
883
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
884

885
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
886
            The datatype the output shall have. This can be used to override
Martin Reinecke's avatar
typos    
Martin Reinecke committed
887
            the field's dtype.
Theo Steininger's avatar
Theo Steininger committed
888

889
890
891
892
893
894
895
896
897
898
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
899
900
        if dtype is None:
            dtype = self.dtype
901
902
        else:
            dtype = np.dtype(dtype)
903

904
905
        casted_x = x

906
        for ind, sp in enumerate(self.domain):
907
            casted_x = sp.pre_cast(casted_x,
908
909
910
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
911
912

        for ind, sp in enumerate(self.domain):
913
914
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
915

916
        return casted_x
csongor's avatar
csongor committed
917

Theo Steininger's avatar
Theo Steininger committed
918
    def _actual_cast(self, x, dtype=None):
919
        if isinstance(x, Field):
csongor's avatar
csongor committed
920
921
922
923
924
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

925
        return_x = distributed_data_object(
926
927
928
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
929
930
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
931

932
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
933
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
934

935
936
937
938
939
940
941
942
943
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
944

945
946
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
947

948
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
949
950
            The new distribution strategy the Field shall have.

951
952
953
954
955
956
957
958
959
960
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
961

Theo Steininger's avatar
Theo Steininger committed
962
        copied_val = self.get_val(copy=True)
963
964
965
966
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
967
968
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
969

970
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
971
972
973
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
974
975
976
977
978
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
979

980
981
982
983
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
984

985
986
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
987

Theo Steininger's avatar
Theo Steininger committed
988
        distribution_strategy : string, all supported distribution strategies
989
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
990

991
992
993
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
994
            The output object.
995
996
997
998
999
1000

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
1001

Theo Steininger's avatar
Theo Steininger committed
1002
1003
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
1004
        else:
Theo Steininger's avatar
Theo Steininger committed
1005
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
1006

Theo Steininger's avatar
Theo Steininger committed
1007
1008
1009
1010
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
1011

1012
1013
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
1014

Theo Steininger's avatar
Theo Steininger committed
1015
1016
        fast_copyable = True
        try:
Martin Reinecke's avatar
Martin Reinecke committed
1017
            for i in range(len(self.domain)):
Theo Steininger's avatar
Theo Steininger committed
1018
1019
1020
1021
1022
1023
1024
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
1025
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
1026
1027
1028
1029
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
1030
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
1031
        return new_field
csongor's avatar
csongor committed
1032

Theo Steininger's avatar
Theo Steininger committed
1033
1034
1035
1036
1037
1038
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
Martin Reinecke's avatar
Martin Reinecke committed
1039
        for key, value in list(self.__dict__.items()):
1040
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
1041
1042
1043
1044
1045
1046
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
1047
        """ Weights the pixels of `self` with their invidual pixel-volume.
1048
1049
1050
1051

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
1052
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
1053

1054
        inplace : boolean