field.py 29.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

csongor's avatar
csongor committed
19
20
21
from __future__ import division
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
22
23
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
24

25
from d2o import distributed_data_object,\
26
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
27

28
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
29

30
from nifty.domain_object import DomainObject
31

32
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
33

csongor's avatar
csongor committed
34
import nifty.nifty_utilities as utilities
35
36
from nifty.random import Random

csongor's avatar
csongor committed
37

Jait Dixit's avatar
Jait Dixit committed
38
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
39
    # ---Initialization methods---
40

41
    def __init__(self, domain=None, val=None, dtype=None,
42
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
43

44
        self.domain = self._parse_domain(domain=domain, val=val)
45
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
46

Theo Steininger's avatar
Theo Steininger committed
47
        self.dtype = self._infer_dtype(dtype=dtype,
48
                                       val=val)
49

50
51
52
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
53

54
55
56
57
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
58

59
    def _parse_domain(self, domain, val=None):
60
        if domain is None:
61
62
63
64
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
65
        elif isinstance(domain, DomainObject):
66
            domain = (domain,)
67
68
69
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
70
        for d in domain:
71
            if not isinstance(d, DomainObject):
72
73
                raise TypeError(
                    "Given domain contains something that is not a "
74
                    "DomainObject instance.")
csongor's avatar
csongor committed
75
76
        return domain

Theo Steininger's avatar
Theo Steininger committed
77
78
79
80
81
82
83
84
85
86
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
87

88
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
89
        if dtype is None:
90
            try:
91
                dtype = val.dtype
92
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
93
94
95
                try:
                    if val is None:
                        raise TypeError
96
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
97
                except(TypeError):
98
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
99
        else:
100
            dtype = np.dtype(dtype)
101

Theo Steininger's avatar
Theo Steininger committed
102
        return dtype
103

104
105
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
106
            if isinstance(val, distributed_data_object):
107
                distribution_strategy = val.distribution_strategy
108
            elif isinstance(val, Field):
109
                distribution_strategy = val.distribution_strategy
110
            else:
111
                self.logger.debug("distribution_strategy set to default!")
112
                distribution_strategy = gc['default_distribution_strategy']
113
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
114
115
116
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
117
        return distribution_strategy
118
119

    # ---Factory methods---
120

121
    @classmethod
122
    def from_random(cls, random_type, domain=None, dtype=None,
123
                    distribution_strategy=None, **kwargs):
124
        # create a initially empty field
125
        f = cls(domain=domain, dtype=dtype,
126
                distribution_strategy=distribution_strategy)
127
128
129
130
131
132
133

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
134
        # extract the distributed_data_object from f and apply the appropriate
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
162
        else:
163
164
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
165

166
        return random_arguments
csongor's avatar
csongor committed
167

168
169
170
171
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
Theo Steininger's avatar
Theo Steininger committed
172
        # check if all spaces in `self.domain` are either harmonic or
173
174
175
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
176
                self.logger.info(
177
                    "Field has a space in `domain` which is neither "
178
179
180
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
181
182
183
184
185
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
186
187
188
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
189
190

        if len(spaces) == 0:
191
192
            raise ValueError(
                "No space for analysis specified.")
193
        elif len(spaces) > 1:
194
195
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
196
197
198
199

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
200
201
            raise ValueError(
                "The analyzed space must be harmonic.")
202

203
204
205
206
207
208
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

209
210
211
212
213
214
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
215
                                  distribution_strategy=distribution_strategy,
216
                                  log=log, nbin=nbin, binbounds=binbounds)
217

218
        # extract pindex and rho from power_domain
219
220
        pindex = power_domain.pindex
        rho = power_domain.rho
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
239
240
241
242
243
244
245
246
247
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

248
249
250
        result_field = self.copy_empty(
                   domain=result_domain,
                   distribution_strategy=power_spectrum.distribution_strategy)
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
279
            raise ValueError("pindex's distribution strategy must be "
280
281
282
283
284
285
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
286
                    "A slicing distributor shall not be reshaped to "
287
288
289
290
291
292
293
294
295
296
297
298
299
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

300
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
301
                         mean=None, std=None):
302

303
304
305
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
306
307
308
        if spaces is None:
            spaces = range(len(self.domain))

309
310
311
312
313
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
314
315
316

        # create the result domain
        result_domain = list(self.domain)
317
318
319
320
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            harmonic_domain = power_space.harmonic_domain
            result_domain[power_space_index] = harmonic_domain
321
322
323

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
324
        if real_power:
325
            result_list = [None]
326
327
        else:
            result_list = [None, None]
328

329
330
        result_list = [self.__class__.from_random(
                             'normal',
331
332
333
                             mean=mean,
                             std=std,
                             domain=result_domain,
334
                             dtype=np.complex,
335
                             distribution_strategy=self.distribution_strategy)
336
337
338
339
340
341
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

        spec = self.val.get_full_data()
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

360
        if real_signal:
361
362
            for power_space_index in spaces:
                harmonic_domain = result_domain[power_space_index]
363
364
365
366
367
368
                result_val_list = [harmonic_domain.hermitian_decomposition(
                                    result_val,
                                    axes=result.domain_axes[power_space_index],
                                    preserve_gaussian_variance=True)[0]
                                   for (result, result_val)
                                   in zip(result_list, result_val_list)]
369
370
371
372
373
374
375

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
376
        else:
377
378
379
380
381
382
            result = result_list[0] + 1j*result_list[1]

        return result

    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
383
384
385

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
386
        pindex = power_space.pindex
387
388
389
390
391
392
393
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
394
            self.logger.warn(
395
                "The distribution_stragey of pindex does not fit the "
396
397
398
399
400
401
402
403
404
405
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
406
407
        local_rescaler = spec[local_blow_up]
        return local_rescaler
408

Theo Steininger's avatar
Theo Steininger committed
409
    # ---Properties---
410

Theo Steininger's avatar
Theo Steininger committed
411
    def set_val(self, new_val=None, copy=False):
412
413
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
414
415
            new_val = new_val.copy()
        self._val = new_val
416
        return self
csongor's avatar
csongor committed
417

418
    def get_val(self, copy=False):
419
420
421
        if self._val is None:
            self.set_val(None)

422
        if copy:
Theo Steininger's avatar
Theo Steininger committed
423
            return self._val.copy()
424
        else:
Theo Steininger's avatar
Theo Steininger committed
425
            return self._val
csongor's avatar
csongor committed
426

Theo Steininger's avatar
Theo Steininger committed
427
428
    @property
    def val(self):
429
        return self.get_val(copy=False)
csongor's avatar
csongor committed
430

Theo Steininger's avatar
Theo Steininger committed
431
432
    @val.setter
    def val(self, new_val):
433
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
434

435
436
    @property
    def shape(self):
437
        shape_tuple = tuple(sp.shape for sp in self.domain)
438
439
440
441
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
442

443
        return global_shape
csongor's avatar
csongor committed
444

445
446
    @property
    def dim(self):
447
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
448
449
450
451
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
452

453
454
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
455
456
457
458
459
460
461
462
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
463
        try:
Theo Steininger's avatar
Theo Steininger committed
464
            return reduce(lambda x, y: x * y, volume_tuple)
465
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
466
            return 0.
467

Theo Steininger's avatar
Theo Steininger committed
468
    # ---Special unary/binary operations---
469

csongor's avatar
csongor committed
470
471
472
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
473
474
        else:
            dtype = np.dtype(dtype)
475

476
477
        casted_x = x

478
        for ind, sp in enumerate(self.domain):
479
            casted_x = sp.pre_cast(casted_x,
480
481
482
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
483
484

        for ind, sp in enumerate(self.domain):
485
486
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
487

488
        return casted_x
csongor's avatar
csongor committed
489

Theo Steininger's avatar
Theo Steininger committed
490
    def _actual_cast(self, x, dtype=None):
491
        if isinstance(x, Field):
csongor's avatar
csongor committed
492
493
494
495
496
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

497
        return_x = distributed_data_object(
498
499
500
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
501
502
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
503

504
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
505
        copied_val = self.get_val(copy=True)
506
507
508
509
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
510
511
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
512

513
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
514
515
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
516
        else:
Theo Steininger's avatar
Theo Steininger committed
517
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
518

Theo Steininger's avatar
Theo Steininger committed
519
520
521
522
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
523

524
525
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
526

Theo Steininger's avatar
Theo Steininger committed
527
528
529
530
531
532
533
534
535
536
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
537
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
538
539
540
541
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
542
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
543
        return new_field
csongor's avatar
csongor committed
544

Theo Steininger's avatar
Theo Steininger committed
545
546
547
548
549
550
551
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
552
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
553
554
555
556
557
558
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
559
        if inplace:
csongor's avatar
csongor committed
560
561
562
563
            new_field = self
        else:
            new_field = self.copy_empty()

564
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
565

566
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
567
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
568
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
569

570
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
571
572
573
574
575
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
576
577

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
578
579
        return new_field

580
581
582
583
584
    def dot(self, x=None, spaces=None, bare=False):

        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
585

Martin Reinecke's avatar
Martin Reinecke committed
586
        # Compute the dot respecting the fact of discrete/continuous spaces
Theo Steininger's avatar
Theo Steininger committed
587
588
589
590
591
        if bare:
            y = self
        else:
            y = self.weight(power=1)

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
607

608
    def norm(self, q=2):
csongor's avatar
csongor committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
623
        if q == 2:
624
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
625
        else:
626
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

643
        new_val = self.get_val(copy=False)
Theo Steininger's avatar
Theo Steininger committed
644
        new_val = new_val.conjugate()
645
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
646
647
648

        return work_field

Theo Steininger's avatar
Theo Steininger committed
649
    # ---General unary/contraction methods---
650

Theo Steininger's avatar
Theo Steininger committed
651
652
    def __pos__(self):
        return self.copy()
653

Theo Steininger's avatar
Theo Steininger committed
654
655
656
657
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
658
659
        return return_field

Theo Steininger's avatar
Theo Steininger committed
660
661
662
663
664
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
665

666
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
667
668
669
670
671
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
672

673
        axes_list = tuple(self.domain_axes[sp_index] for sp_index in spaces)
674
675

        try:
Theo Steininger's avatar
Theo Steininger committed
676
            axes_list = reduce(lambda x, y: x+y, axes_list)
677
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
678
            axes_list = ()
csongor's avatar
csongor committed
679

Theo Steininger's avatar
Theo Steininger committed
680
681
682
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
683

Theo Steininger's avatar
Theo Steininger committed
684
685
686
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
687
        else:
Theo Steininger's avatar
Theo Steininger committed
688
689
690
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
691

Theo Steininger's avatar
Theo Steininger committed
692
693
694
695
            return_field = Field(domain=return_domain,
                                 val=data,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
696

697
698
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
699

700
701
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
702

703
704
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
705

706
707
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
708

709
710
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
711

712
713
    def nanmin(self, spaces=None):
        return self._contraction_helper('nanmin', spaces)
csongor's avatar
csongor committed
714

715
716
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
717

718
719
    def nanmax(self, spaces=None):
        return self._contraction_helper('nanmax', spaces)
csongor's avatar
csongor committed
720

721
722
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
723

724
725
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
726

727
728
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
729

Theo Steininger's avatar
Theo Steininger committed
730
    # ---General binary methods---
csongor's avatar
csongor committed
731

Theo Steininger's avatar
Theo Steininger committed
732
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
733
        # if other is a field, make sure that the domains match
734
        if isinstance(other, Field):
Theo Steininger's avatar
Theo Steininger committed
735
736
737
738
739
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
            except AssertionError:
740
741
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
742
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
743

Theo Steininger's avatar
Theo Steininger committed
744
745
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
746
747
748
749

        if inplace:
            working_field = self
        else:
750
            working_field = self.copy_empty(dtype=return_val.dtype)
csongor's avatar
csongor committed
751

Theo Steininger's avatar
Theo Steininger committed
752
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
753
754
755
        return working_field

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
756
        return self._binary_helper(other, op='__add__')
757

758
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
759
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
760
761

    def __iadd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
762
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
763
764

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
765
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
766
767

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
768
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
769
770

    def __isub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
771
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
772
773

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
774
        return self._binary_helper(other, op='__mul__')
775

776
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
777
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
778
779

    def __imul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
780
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
781
782

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
783
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
784
785

    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
786
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
787
788

    def __idiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
789
        return self._binary_helper(other, op='__idiv__', inplace=True)
790

csongor's avatar
csongor committed
791
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
792
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
793
794

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
795
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
796
797

    def __ipow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
798
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
799
800

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
801
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
802
803

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
804
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
805
806
807
808
809

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
810
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
811
812
813
814
815

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
816
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
817
818

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
819
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
820
821

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
822
823
824
825
826
827
828
829
830
831
832
833
834
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
835

Jait Dixit's avatar
Jait Dixit committed
836
837
838
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Theo Steininger's avatar
Theo Steininger committed
839
840
841
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
842
        hdf5_group['num_domain'] = len(self.domain)
Jait Dixit's avatar
Jait Dixit committed
843

Theo Steininger's avatar
Theo Steininger committed
844
845
846
847
        if self._val is None:
            ret_dict = {}
        else:
            ret_dict = {'val': self.val}
Jait Dixit's avatar
Jait Dixit committed
848
849
850
851
852
853
854

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        return ret_dict

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
855
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
856
857
858
859
860
861
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
862
        for i in range(hdf5_group['num_domain'][()]):
Theo Steininger's avatar
Theo Steininger committed
863
            temp_domain.append(repository.get('s_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
864
865
        new_field.domain = tuple(temp_domain)

Theo Steininger's avatar
Theo Steininger committed
866
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
Theo Steininger's avatar
Theo Steininger committed
867
868
869
870
871
872

        try:
            new_field._val = repository.get('val', hdf5_group)
        except(KeyError):
            new_field._val = None

Theo Steininger's avatar
Theo Steininger committed
873
874
875
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy =\
            hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
876
877

        return new_field
878

Theo Steininger's avatar
Theo Steininger committed
879

880
class EmptyField(Field):
csongor's avatar
csongor committed
881
882
    def __init__(self):
        pass