field.py 49.2 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
4
from __future__ import division
import numpy as np
import pylab as pl

5
6
from d2o import distributed_data_object, \
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
7

8
9
10
from nifty.config import about, \
    nifty_configuration as gc, \
    dependency_injector as gdi
csongor's avatar
csongor committed
11

12
13
from nifty.field_types import FieldType,\
                              FieldArray
14

15
from nifty.spaces.space import Space
csongor's avatar
csongor committed
16

csongor's avatar
csongor committed
17
import nifty.nifty_utilities as utilities
18
from nifty_random import random
csongor's avatar
csongor committed
19
20
21
22

POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']


23
class Field(object):
csongor's avatar
csongor committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    """
        ..         ____   __             __          __
        ..       /   _/ /__/           /  /        /  /
        ..      /  /_   __   _______  /  /    ____/  /
        ..     /   _/ /  / /   __  / /  /   /   _   /
        ..    /  /   /  / /  /____/ /  /_  /  /_/  /
        ..   /__/   /__/  \______/  \___/  \______|  class

        Basic NIFTy class for fields.

        Parameters
        ----------
        domain : space
            The space wherein valid arguments live.

        val : {scalar, ndarray}, *optional*
            Defines field values, either to be given by a number interpreted
            as a constant array, or as an arbitrary array consistent with the
            space defined in domain or to be drawn from a random distribution
            controlled by kwargs.

        codomain : space, *optional*
            The space wherein the operator output lives (default: domain).


        Other Parameters
        ----------------
        random : string
            Indicates that the field values should be drawn from a certain
            distribution using a pseudo-random number generator.
            Supported distributions are:

            - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
            - "gau" (normal distribution with zero-mean and a given standard
                deviation or variance)
            - "syn" (synthesizes from a given power spectrum)
            - "uni" (uniform distribution over [vmin,vmax[)

        dev : scalar
            Sets the standard deviation of the Gaussian distribution
            (default=1).

        var : scalar
            Sets the variance of the Gaussian distribution, outranking the dev
            parameter (default=1).

        spec : {scalar, list, array, field, function}
            Specifies a power spectrum from which the field values should be
            synthesized (default=1). Can be given as a constant, or as an
            array with indvidual entries per mode.
        log : bool
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).

        vmin : scalar
            Sets the lower limit for the uniform distribution.
        vmax : scalar
            Sets the upper limit for the uniform distribution.

        Attributes
        ----------
        domain : space
            The space wherein valid arguments live.

        val : {scalar, ndarray}, *optional*
            Defines field values, either to be given by a number interpreted
            as a constant array, or as an arbitrary array consistent with the
            space defined in domain or to be drawn from a random distribution
            controlled by the keyword arguments.

        codomain : space, *optional*
            The space wherein the operator output lives (default: domain).

    """

109
    def __init__(self, domain=None, val=None, codomain=None,
110
                 dtype=None, field_type=None, copy=False,
111
                 datamodel=None, **kwargs):
csongor's avatar
csongor committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        """
            Sets the attributes for a field class instance.

        Parameters
        ----------
        domain : space
            The space wherein valid arguments live.

        val : {scalar,ndarray}, *optional*
            Defines field values, either to be given by a number interpreted
            as a constant array, or as an arbitrary array consistent with the
            space defined in domain or to be drawn from a random distribution
            controlled by the keyword arguments.

        codomain : space, *optional*
            The space wherein the operator output lives (default: domain).

        Returns
        -------
        Nothing

        """
        # If the given val was a field, try to cast it accordingly to the given
        # domain and codomain, etc...
136
        if isinstance(val, Field):
csongor's avatar
csongor committed
137
138
139
140
141
            self._init_from_field(f=val,
                                  domain=domain,
                                  codomain=codomain,
                                  copy=copy,
                                  dtype=dtype,
142
                                  field_type=field_type,
csongor's avatar
csongor committed
143
144
145
146
147
148
149
150
                                  datamodel=datamodel,
                                  **kwargs)
        else:
            self._init_from_array(val=val,
                                  domain=domain,
                                  codomain=codomain,
                                  copy=copy,
                                  dtype=dtype,
151
                                  field_type=field_type,
csongor's avatar
csongor committed
152
153
154
                                  datamodel=datamodel,
                                  **kwargs)

155
    def _init_from_field(self, f, domain, codomain, copy, dtype,
156
                         field_type, datamodel, **kwargs):
csongor's avatar
csongor committed
157
158
159
160
161
162
        # check domain
        if domain is None:
            domain = f.domain

        # check codomain
        if codomain is None:
csongor's avatar
csongor committed
163
            if self._check_codomain(domain, f.codomain):
csongor's avatar
csongor committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
                codomain = f.codomain
            else:
                codomain = self.get_codomain(domain)

        # Check if the given field lives in a space which is compatible to the
        # given domain
        if f.domain != domain:
            # Try to transform the given field to the given domain/codomain
            f = f.transform(new_domain=domain,
                            new_codomain=codomain)

        self._init_from_array(domain=domain,
                              val=f.val,
                              codomain=codomain,
                              copy=copy,
                              dtype=dtype,
                              datamodel=datamodel,
                              **kwargs)

183
    def _init_from_array(self, val, domain, codomain, copy, dtype,
184
                         field_type, datamodel, **kwargs):
csongor's avatar
csongor committed
185
        # check domain
186
        self.domain = self._parse_domain(domain=domain)
187
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
188
189
190

        # check codomain
        if codomain is None:
191
            self.codomain = self._build_codomain(domain=self.domain)
192
193
194
        else:
            self.codomain = self._parse_codomain(codomain, self.domain)

195
        self.field_type = self._parse_field_type(field_type)
196
        self.field_type_axes = self._get_axes_tuple(self.field_type)
197
198
199
200
201
202
203

        if dtype is None:
            dtype = self._infer_dtype(domain=self.domain,
                                      dtype=dtype,
                                      field_type=self.field_type)
        self.dtype = dtype

204
        self._comm = getattr(gdi[gc['mpi_module']], gc['default_comm'])
205
206
207
208
209
210
211

        if datamodel in DISTRIBUTION_STRATEGIES['all']:
            self.datamodel = datamodel
        elif isinstance(val, distributed_data_object):
            self.datamodel = val.distribution_strategy
        else:
            self.datamodel = gc['default_datamodel']
csongor's avatar
csongor committed
212
213
214

        if val is None:
            if kwargs == {}:
csongor's avatar
csongor committed
215
                val = self.cast(0)
csongor's avatar
csongor committed
216
            else:
csongor's avatar
csongor committed
217
218
219
                val = self.get_random_values(domain=self.domain,
                                             codomain=self.codomain,
                                             **kwargs)
csongor's avatar
csongor committed
220
221
        self.set_val(new_val=val, copy=copy)

222
223
224
225
226
    def _infer_dtype(self, domain=None, dtype=None, field_type=None):
        dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
227
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
228

csongor's avatar
csongor committed
229
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
csongor's avatar
csongor committed
230
231
        return dtype

232
    def _get_axes_tuple(self, things_with_shape):
csongor's avatar
csongor committed
233
        i = 0
234
235
        axes_list = []
        for thing in things_with_shape:
csongor's avatar
csongor committed
236
            l = []
237
            for j in range(len(thing.shape)):
csongor's avatar
csongor committed
238
239
                l += [i]
                i += 1
240
            axes_list += [tuple(l)]
241
        return tuple(axes_list)
csongor's avatar
csongor committed
242

243
    def _parse_domain(self, domain):
244
245
246
        if domain is None:
            domain = ()
        elif not isinstance(domain, tuple):
247
            domain = (domain,)
csongor's avatar
csongor committed
248
        for d in domain:
249
            if not isinstance(d, Space):
csongor's avatar
csongor committed
250
                raise TypeError(about._errors.cstring(
251
252
                    "ERROR: Given domain contains something that is not a "
                    "nifty.space."))
csongor's avatar
csongor committed
253
254
        return domain

255
256
257
258
259
260
261
    def _parse_codomain(self, codomain, domain):
        if not isinstance(codomain, tuple):
            codomain = (codomain,)
        if len(domain) != len(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: domain and codomain do not have the same length."))
        for (cd, d) in zip(codomain, domain):
262
            if not isinstance(cd, Space):
263
264
265
266
267
268
269
270
                raise TypeError(about._errors.cstring(
                    "ERROR: Given codomain contains something that is not a"
                    "nifty.space."))
            if not d.check_codomain(cd):
                raise ValueError(about._errors.cstring(
                    "ERROR: codomain contains a space that is not compatible "
                    "to its domain-counterpart."))
        return codomain
csongor's avatar
csongor committed
271

272
273
274
275
276
277
    def _parse_field_type(self, field_type):
        if field_type is None:
            field_type = ()
        elif not isinstance(field_type, tuple):
            field_type = (field_type,)
        for ft in field_type:
278
            if not isinstance(ft, FieldType):
279
                raise TypeError(about._errors.cstring(
280
                    "ERROR: Given object is not a nifty.FieldType."))
281
282
283
        return field_type

    def _build_codomain(self, domain):
284
285
        codomain = tuple(sp.get_codomain() for sp in domain)
        return codomain
csongor's avatar
csongor committed
286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    def get_random_values(self, **kwargs):
        arg = random.parse_arguments(self, **kwargs)

        if arg is None:
            return self.cast(0)

        # Prepare the empty distributed_data_object
        sample = distributed_data_object(
                                    global_shape=self.shape,
                                    dtype=self.dtype)

        # Case 1: uniform distribution over {-1,+1}/{1,i,-1,-i}
        if arg['random'] == 'pm1':
            sample.apply_generator(lambda s: random.pm1(dtype=self.dtype,
                                                        shape=s))

        # Case 2: normal distribution with zero-mean and a given standard
        #         deviation or variance
        elif arg['random'] == 'gau':
            std = arg['std']
            if np.isscalar(std) or std is None:
                processed_std = std
            else:
                try:
                    processed_std = sample.distributor. \
                        extract_local_data(std)
                except(AttributeError):
                    processed_std = std

            sample.apply_generator(lambda s: random.gau(dtype=self.dtype,
                                                        shape=s,
                                                        mean=arg['mean'],
                                                        std=processed_std))

        # Case 3: uniform distribution
        elif arg['random'] == 'uni':
            sample.apply_generator(lambda s: random.uni(dtype=self.dtype,
                                                        shape=s,
                                                        vmin=arg['vmin'],
                                                        vmax=arg['vmax']))
        return sample
csongor's avatar
csongor committed
328

csongor's avatar
csongor committed
329
    def __len__(self):
330
        return int(self.dim[0])
csongor's avatar
csongor committed
331

332
    def copy(self, domain=None, codomain=None, field_type=None, **kwargs):
csongor's avatar
csongor committed
333
        copied_val = self._unary_operation(self.get_val(), op='copy', **kwargs)
334
335
336
        new_field = self.copy_empty(domain=domain,
                                    codomain=codomain,
                                    field_type=field_type)
337
        new_field.set_val(new_val=copied_val, copy=True)
csongor's avatar
csongor committed
338
339
340
341
342
343
344
        return new_field

    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
csongor's avatar
csongor committed
345
        # copy domain, codomain and val
csongor's avatar
csongor committed
346
347
348
349
350
        for key, value in self.__dict__.items():
            if key != 'val':
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = \
351
                    self._unary_operation(self.val, op='copy_empty')
csongor's avatar
csongor committed
352
353
        return new_field

354
    def copy_empty(self, domain=None, codomain=None, dtype=None,
355
                   datamodel=None, field_type=None, **kwargs):
csongor's avatar
csongor committed
356
357
        if domain is None:
            domain = self.domain
358

csongor's avatar
csongor committed
359
360
        if codomain is None:
            codomain = self.codomain
361

csongor's avatar
csongor committed
362
363
        if dtype is None:
            dtype = self.dtype
364

csongor's avatar
csongor committed
365
366
367
        if datamodel is None:
            datamodel = self.datamodel

368
369
370
371
        if field_type is None:
            field_type = self.field_type

        _fast_copyable = True
372
        for i in xrange(len(self.domain)):
373
374
375
376
377
378
            if self.domain[i] is not domain[i]:
                _fast_copyable = False
                break
            if self.codomain[i] is not codomain[i]:
                _fast_copyable = False
                break
379
380
381
382
383
384

        for i in xrange(len(self.field_type)):
            if self.field_type[i] is not field_type[i]:
                _fast_copyable = False
                break

385
386
        if (_fast_copyable and dtype == self.dtype and
                datamodel == self.datamodel and kwargs == {}):
csongor's avatar
csongor committed
387
388
            new_field = self._fast_copy_empty()
        else:
389
            new_field = Field(domain=domain, codomain=codomain, dtype=dtype,
390
391
                              datamodel=datamodel, field_type=field_type,
                              **kwargs)
csongor's avatar
csongor committed
392
393
394
395
396
397
398
399
400
401
402
403
        return new_field

    def set_val(self, new_val=None, copy=False):
        """
            Resets the field values.

            Parameters
            ----------
            new_val : {scalar, ndarray}
                New field values either as a constant or an arbitrary array.

        """
404
405
406
407
        new_val = self.cast(new_val)
        if copy:
            new_val = self.unary_operation(new_val, op='copy')
        self.val = new_val
csongor's avatar
csongor committed
408
409
        return self.val

410
411
412
413
414
    def get_val(self, copy=False):
        if copy:
            return self.val.copy()
        else:
            return self.val
csongor's avatar
csongor committed
415
416

    def __getitem__(self, key):
csongor's avatar
csongor committed
417
418
419
420
        return self.val[key]

    def __setitem__(self, key, item):
        self.val[key] = item
csongor's avatar
csongor committed
421

422
423
    @property
    def shape(self):
424
425
426
427
428
429
430
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
431

432
        return global_shape
csongor's avatar
csongor committed
433

434
435
    @property
    def dim(self):
csongor's avatar
csongor committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        """
            Computes the (array) dimension of the underlying space.

            Parameters
            ----------
            split : bool
                Sets the output to be either split up per axis or
                in form of total number of field entries in all
                dimensions (default=False)

            Returns
            -------
            dim : {scalar, ndarray}
                Dimension of space.

        """
452
        return reduce(lambda x, y: x * y, self.shape)
csongor's avatar
csongor committed
453

454
455
456
457
458
459
    @property
    def dof(self):
        dof_tuple = ()
        dof_tuple += tuple(sp.dof for sp in self.domain)
        dof_tuple += tuple(ft.dof for ft in self.field_type)
        try:
460
            return reduce(lambda x, y: x * y, dof_tuple)
461
462
463
        except TypeError:
            return ()

csongor's avatar
csongor committed
464
465
466
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
467
468
        else:
            dtype = np.dtype(dtype)
469

csongor's avatar
csongor committed
470
        casted_x = self._cast_to_d2o(x, dtype=dtype)
471
472

        for ind, sp in enumerate(self.domain):
473
            casted_x = sp.complement_cast(casted_x,
474
                                          axis=self.domain_axes[ind])
475
476
477

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.complement_cast(casted_x,
478
                                          axis=self.field_type_axes[ind])
479
480

        return casted_x
csongor's avatar
csongor committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

    def _cast_to_d2o(self, x, dtype=None, shape=None, **kwargs):
        """
            Computes valid field values from a given object, trying
            to translate the given data into a valid form. Thereby it is as
            benevolent as possible.

            Parameters
            ----------
            x : {float, numpy.ndarray, nifty.field}
                Object to be transformed into an array of valid field values.

            Returns
            -------
            x : numpy.ndarray, distributed_data_object
                Array containing the field values, which are compatible to the
                space.

            Other parameters
            ----------------
            verbose : bool, *optional*
                Whether the method should raise a warning if information is
                lost during casting (default: False).
        """
505
        if isinstance(x, Field):
csongor's avatar
csongor committed
506
507
508
509
510
511
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

        if shape is None:
theos's avatar
theos committed
512
            shape = self.shape
csongor's avatar
csongor committed
513
514
515

        # Case 1: x is a distributed_data_object
        if isinstance(x, distributed_data_object):
516
517
518
            if x.comm is not self._comm:
                raise ValueError(about._errors.cstring(
                    "ERROR: comms do not match."))
csongor's avatar
csongor committed
519
520
521
522
523
            to_copy = False

            # Check the shape
            if np.any(np.array(x.shape) != np.array(shape)):
                # Check if at least the number of degrees of freedom is equal
524
                if x.dim == self.dim:
csongor's avatar
csongor committed
525
526
527
528
529
530
531
532
533
534
535
536
                    try:
                        temp = x.copy_empty(global_shape=shape)
                        temp.set_local_data(x, copy=False)
                    except:
                        # If the number of dof is equal or 1, use np.reshape...
                        about.warnings.cflush(
                            "WARNING: Trying to reshape the data. This " +
                            "operation is expensive as it consolidates the " +
                            "full data!\n")
                        temp = x
                        temp = np.reshape(temp, shape)
                    # ... and cast again
csongor's avatar
csongor committed
537
                    return self._cast_to_d2o(temp, dtype=dtype, **kwargs)
csongor's avatar
csongor committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

                else:
                    raise ValueError(about._errors.cstring(
                        "ERROR: Data has incompatible shape!"))

            # Check the dtype
            if x.dtype != dtype:
                if x.dtype > dtype:
                    about.warnings.cflush(
                        "WARNING: Datatypes are of conflicting precision " +
                        "(own: " + str(dtype) + " <> foreign: " +
                        str(x.dtype) + ") and will be casted! Potential " +
                        "loss of precision!\n")
                to_copy = True

            # Check the distribution_strategy
            if x.distribution_strategy != self.datamodel:
                to_copy = True

            if to_copy:
                temp = x.copy_empty(dtype=dtype,
                                    distribution_strategy=self.datamodel)
                temp.set_data(to_key=(slice(None),),
                              data=x,
                              from_key=(slice(None),))
                temp.hermitian = x.hermitian
                x = temp

            return x

        # Case 2: x is something else
        # Use general d2o casting
        else:
            x = distributed_data_object(x,
theos's avatar
theos committed
572
                                        global_shape=self.shape,
csongor's avatar
csongor committed
573
                                        dtype=dtype,
574
575
                                        distribution_strategy=self.datamodel,
                                        comm=self._comm)
csongor's avatar
csongor committed
576
577
578
            # Cast the d2o
            return self.cast(x, dtype=dtype)

579
    def weight(self, power=1, inplace=False, spaces=None):
csongor's avatar
csongor committed
580
581
582
583
584
585
586
587
588
589
        """
            Returns the field values, weighted with the volume factors to a
            given power. The field values will optionally be overwritten.

            Parameters
            ----------
            power : scalar, *optional*
                Specifies the optional power coefficient to which the field
                values are taken (default=1).

590
            inplace : bool, *optional*
csongor's avatar
csongor committed
591
592
593
594
595
                Whether to overwrite the field values or not (default: False).

            Returns
            -------
            field   : field, *optional*
596
                If inplace is False, the weighted field is returned.
csongor's avatar
csongor committed
597
598
599
                Otherwise, nothing is returned.

        """
600
        if inplace:
csongor's avatar
csongor committed
601
602
603
604
            new_field = self
        else:
            new_field = self.copy_empty()

605
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
606

csongor's avatar
csongor committed
607
        if spaces is None:
theos's avatar
theos committed
608
            spaces = range(len(self.shape))
csongor's avatar
csongor committed
609

610
611
612
        for ind, sp in enumerate(self.domain):
            new_val = sp.calc_weight(new_val,
                                     power=power,
613
                                     axes=self.domain_axes[ind])
614
615

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
616
617
        return new_field

618
    def norm(self, q=2):
csongor's avatar
csongor committed
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
633
        if q == 2:
634
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
635
        else:
636
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
637

638
    def dot(self, x=None, bare=False):
csongor's avatar
csongor committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
        """
            Computes the inner product of the field with a given object
            implying the correct volume factor needed to reflect the
            discretization of the continuous fields.

            Parameters
            ----------
            x : {scalar, ndarray, field}, *optional*
                The object with which the inner product is computed
                (default=None).

            Returns
            -------
            dot : scalar
                The result of the inner product.

        """
        # Case 1: x equals None
        if x is None:
            return None

        # Case 2: x is a field
661
        elif isinstance(x, Field):
662
663
            for ind, sp in enumerate(self.domain):
                assert sp == x.domain[ind]
csongor's avatar
csongor committed
664
665
666

            # whether the domain matches exactly or not:
            # extract the data from x and try to dot with this
667
            return self.dot(x=x.get_val(), bare=bare)
csongor's avatar
csongor committed
668
669
670
671
672

        # Case 3: x is something else
        else:

            # Compute the dot respecting the fact of discrete/continous spaces
673
674
675
676
677
            if not bare:
                y = self.weight(power=1)
            else:
                y = self
            y = y.get_val(copy=False)
csongor's avatar
csongor committed
678

679
680
            # Cast the input in order to cure dtype and shape differences
            x = self.cast(x)
csongor's avatar
csongor committed
681

682
            dotted = x.conjugate() * y
csongor's avatar
csongor committed
683

684
            for ind in range(-1, -len(self.field_type_axes)-1, -1):
685
686
                dotted = self.field_type[ind].dot_contraction(
                            dotted,
687
                            axes=self.field_type_axes[ind])
csongor's avatar
csongor committed
688

689
            for ind in range(-1, -len(self.domain_axes)-1, -1):
690
691
                dotted = self.domain[ind].dot_contraction(
                            dotted,
692
                            axes=self.domain_axes[ind])
693
            return dotted
csongor's avatar
csongor committed
694

695
696
    def vdot(self, *args, **kwargs):
        return self.dot(*args, **kwargs)
csongor's avatar
csongor committed
697

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
#    def outer_dot(self, x=1, axis=None):
#
#        # Use the fact that self.val is a numpy array of dtype np.object
#        # -> The shape casting, etc... can be done by numpy
#        # If ishape == (), self.val will be multiplied with x directly.
#        if self.ishape == ():
#            return self * x
#        new_val = np.sum(self.get_val() * x, axis=axis)
#        # if axis != None, the contraction was not overarching
#        if np.dtype(new_val.dtype).type == np.object_:
#            new_field = self.copy_empty(ishape=new_val.shape)
#        else:
#            new_field = self.copy_empty(ishape=())
#        new_field.set_val(new_val=new_val)
#        return new_field
#
#    def tensor_product(self, x=None):
#        if x is None:
#            return self
#        elif np.isscalar(x) == True:
#            return self * x
#        else:
#            if self.ishape == ():
#                temp_val = self.get_val()
#                old_val = np.empty((1,), dtype=np.object)
#                old_val[0] = temp_val
#            else:
#                old_val = self.get_val()
#
#            new_val = np.tensordot(old_val, x, axes=0)
#
#            if self.ishape == ():
#                new_val = new_val[0]
#            new_field = self.copy_empty(ishape=new_val.shape)
#            new_field.set_val(new_val=new_val)
#
#            return new_field
csongor's avatar
csongor committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

751
752
        new_val = self.get_val(copy=False)
        new_val = self._unary_operation(new_val, op='conjugate')
csongor's avatar
csongor committed
753

754
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
755
756
757

        return work_field

758
    def transform(self, spaces=None, **kwargs):
csongor's avatar
csongor committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        """
            Computes the transform of the field using the appropriate conjugate
            transformation.

            Parameters
            ----------
            codomain : space, *optional*
                Domain of the transform of the field (default:self.codomain)

            overwrite : bool, *optional*
                Whether to overwrite the field or not (default: False).

            Other Parameters
            ----------------
            iter : scalar
                Number of iterations (default: 0)

            Returns
            -------
            field : field, *optional*
                If overwrite is False, the transformed field is returned.
                Otherwise, nothing is returned.

        """
783
784

        try:
785
            iter(spaces)
786
787
        except TypeError:
            if spaces is None:
788
                spaces = xrange(len(self.domain_axes))
789
            else:
790
                spaces = (spaces, )
csongor's avatar
csongor committed
791

csongor's avatar
csongor committed
792
        new_val = self.get_val()
793
794
795
796
        new_domain = ()
        new_codomain = ()
        for ind in xrange(len(self.domain)):
            if ind in spaces:
797
                sp = self.domain[ind]
798
                cosp = self.codomain[ind]
799
                new_val = sp.calc_transform(new_val,
800
801
                                            codomain=cosp,
                                            axes=self.domain_axes[ind],
802
                                            **kwargs)
803
804
805
806
807
                new_domain += (self.codomain[ind],)
                new_codomain += (self.domain[ind],)
            else:
                new_domain += (self.domain[ind],)
                new_codomain += (self.codomain[ind],)
808
809
810

        return_field = self.copy_empty(domain=new_domain,
                                       codomain=new_codomain)
csongor's avatar
csongor committed
811
        return_field.set_val(new_val=new_val, copy=False)
812

csongor's avatar
csongor committed
813
814
        return return_field

815
    def smooth(self, sigma=0, spaces=None, **kwargs):
csongor's avatar
csongor committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
        """
            Smoothes the field by convolution with a Gaussian kernel.

            Parameters
            ----------
            sigma : scalar, *optional*
                standard deviation of the Gaussian kernel specified in units of
                length in position space (default: 0)

            overwrite : bool, *optional*
                Whether to overwrite the field or not (default: False).

            Other Parameters
            ----------------
            iter : scalar
                Number of iterations (default: 0)

            Returns
            -------
            field : field, *optional*
                If overwrite is False, the transformed field is returned.
                Otherwise, nothing is returned.

        """
840
841
842
843
844
845
        new_field = self.copy_empty()

        try:
            spaces_iterator = iter(spaces)
        except TypeError:
            if spaces is None:
846
                spaces_iterator = xrange(len(self.domain))
847
848
            else:
                spaces_iterator = (spaces, )
csongor's avatar
csongor committed
849

csongor's avatar
csongor committed
850
        new_val = self.get_val()
851
852
853
854
        for ind in spaces_iterator:
            sp = self.domain[ind]
            new_val = sp.calc_smooth(new_val,
                                     sigma=sigma,
855
                                     axes=self.domain_axes[ind],
856
                                     **kwargs)
csongor's avatar
csongor committed
857

858
        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
        return new_field

    def power(self, **kwargs):
        """
            Computes the power spectrum of the field values.

            Other Parameters
            ----------------
            pindex : ndarray, *optional*
                Specifies the indexing array for the distribution of
                indices in conjugate space (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
            rho : scalar
                Number of degrees of freedom per irreducible band
                (default=None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on
                logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to
                ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).
            iter : scalar
                Number of iterations (default: 0)

            Returns
            -------
            spec : ndarray
                Returns the power spectrum.

        """
900
        if ("codomain" in kwargs):
csongor's avatar
csongor committed
901
902
903
            kwargs.__delitem__("codomain")
            about.warnings.cprint("WARNING: codomain was removed from kwargs.")

904
905
906
907
908
909
910
911
#        power_spectrum = self.get_val()
#        for ind, space in self.domain:
#            power_spectrum = space.calc_smooth(power_spectrum,
#                                               codomain=self.codomain,
#                                               axis=self.axes_list[ind],
#                                               **kwargs)
#
#        return power_spectrum
csongor's avatar
csongor committed
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

    def hat(self):
        """
            Translates the field into a diagonal operator.

            Returns
            -------
            D : operator
                The new diagonal operator instance.

        """
        from nifty.operators.nifty_operators import diagonal_operator
        return diagonal_operator(domain=self.domain,
                                 diag=self.get_val(),
                                 bare=False,
                                 ishape=self.ishape)

    def inverse_hat(self):
        """
            Translates the inverted field into a diagonal operator.

            Returns
            -------
            D : operator
                The new diagonal operator instance.

        """
csongor's avatar
csongor committed
939
        any_zero_Q = np.any(map(lambda z: (z == 0), self.get_val()))
csongor's avatar
csongor committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        if any_zero_Q:
            raise AttributeError(
                about._errors.cstring("ERROR: singular operator."))
        else:
            from nifty.operators.nifty_operators import diagonal_operator
            return diagonal_operator(domain=self.domain,
                                     diag=(1 / self).get_val(),
                                     bare=False,
                                     ishape=self.ishape)

    def plot(self, **kwargs):
        """
            Plots the field values using matplotlib routines.

            Other Parameters
            ----------------
            title : string
                Title of the plot (default= "").
            vmin : scalar
                Minimum value displayed (default=min(x)).
            vmax : scalar
                Maximum value displayed (default=max(x)).
            power : bool
                Whether to plot the power spectrum or the array (default=None).
            unit : string
                The unit of the field values (default="").
            norm : scalar
                A normalization (default=None).
            cmap : cmap
                A color map (default=None).
            cbar : bool
                Whether to show the color bar or not (default=True).
            other : {scalar, ndarray, field}
                Object or tuple of objects to be added (default=None).
            legend : bool
                Whether to show the legend or not (default=False).
            mono : bool
                Whether to plot the monopol of the power spectrum or not
                (default=True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
            error : {scalar, ndarray, field}
                object indicating some confidence intervall (default=None).
            iter : scalar
                Number of iterations (default: 0).
            kindex : scalar
                The spectral index per irreducible band (default=None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on
                logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to
                ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).

            Notes
            -----
            The applicability of the keyword arguments depends on the
            respective space on which the field is defined. Confer to the
            corresponding :py:meth:`get_plot` method.

        """
        # if a save path is given, set pylab to not-interactive
        remember_interactive = pl.isinteractive()
        pl.matplotlib.interactive(not bool(kwargs.get("save", False)))

        if "codomain" in kwargs:
            kwargs.__delitem__("codomain")
            about.warnings.cprint("WARNING: codomain was removed from kwargs.")

        # draw/save the plot(s)
        self.domain.get_plot(self.val, codomain=self.codomain, **kwargs)

        # restore the pylab interactiveness
        pl.matplotlib.interactive(remember_interactive)

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
1032
1033
1034
1035
1036
1037
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean) + \
               "\n- codomain      = " + repr(self.codomain) + \
               "\n- ishape          = " + str(self.ishape)
csongor's avatar
csongor committed
1038

csongor's avatar
csongor committed
1039
1040
1041
1042
1043
1044
    def sum(self, **kwargs):
        return self._unary_operation(self.get_val(), op='sum', **kwargs)

    def prod(self, **kwargs):
        return self._unary_operation(self.get_val(), op='prod', **kwargs)

csongor's avatar
csongor committed
1045
1046
    def all(self, **kwargs):
        return self._unary_operation(self.get_val(), op='all', **kwargs)
csongor's avatar
csongor committed
1047

csongor's avatar
csongor committed
1048
1049
1050
    def any(self, **kwargs):
        return self._unary_operation(self.get_val(), op='any', **kwargs)

csongor's avatar
csongor committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
    def min(self, ignore=False, **kwargs):
        """
            Returns the minimum of the field values.

            Parameters
            ----------
            ignore : bool
                Whether to ignore NANs or not (default: False).

            Returns
            -------
            amin : {scalar, ndarray}
                Minimum field value.

            See Also
            --------
            np.amin, np.nanmin

        """
csongor's avatar
csongor committed
1070
        return self._unary_operation(self.get_val(), op='amin', **kwargs)
csongor's avatar
csongor committed
1071
1072

    def nanmin(self, **kwargs):
csongor's avatar
csongor committed
1073
        return self._unary_operation(self.get_val(), op='nanmin', **kwargs)
csongor's avatar
csongor committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

    def max(self, **kwargs):
        """
            Returns the maximum of the field values.

            Parameters
            ----------
            ignore : bool
                Whether to ignore NANs or not (default: False).

            Returns
            -------
            amax : {scalar, ndarray}
                Maximum field value.

            See Also
            --------
            np.amax, np.nanmax

        """
csongor's avatar
csongor committed
1094
        return self._unary_operation(self.get_val(), op='amax', **kwargs)
csongor's avatar
csongor committed
1095
1096

    def nanmax(self, **kwargs):
csongor's avatar
csongor committed
1097
        return self._unary_operation(self.get_val(), op='nanmax', **kwargs)
csongor's avatar
csongor committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

    def median(self, **kwargs):
        """
            Returns the median of the field values.

            Returns
            -------
            med : scalar
                Median field value.

            See Also
            --------
            np.median

        """
csongor's avatar
csongor committed
1113
        return self._unary_operation(self.get_val(), op='median',
csongor's avatar
csongor committed
1114
                                     **kwargs)
csongor's avatar
csongor committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

    def mean(self, **kwargs):
        """
            Returns the mean of the field values.

            Returns
            -------
            mean : scalar
                Mean field value.

            See Also
            --------
            np.mean

        """
csongor's avatar
csongor committed
1130
        return self._unary_operation(self.get_val(), op='mean',
csongor's avatar
csongor committed
1131
                                     **kwargs)
csongor's avatar
csongor committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

    def std(self, **kwargs):
        """
            Returns the standard deviation of the field values.

            Returns
            -------
            std : scalar
                Standard deviation of the field values.

            See Also
            --------
            np.std

        """
csongor's avatar
csongor committed
1147
        return self._unary_operation(self.get_val(), op='std',
csongor's avatar
csongor committed
1148
                                     **kwargs)
csongor's avatar
csongor committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

    def var(self, **kwargs):
        """
            Returns the variance of the field values.

            Returns
            -------
            var : scalar
                Variance of the field values.

            See Also
            --------
            np.var

        """
csongor's avatar
csongor committed
1164
        return self._unary_operation(self.get_val(), op='var',
csongor's avatar
csongor committed
1165
                                     **kwargs)
csongor's avatar
csongor committed
1166

1167
    def argmin(self, split=False, **kwargs):
csongor's avatar
csongor committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        """
            Returns the index of the minimum field value.

            Parameters
            ----------
            split : bool
                Whether to split (unravel) the flat index or not; does not
                apply to multiple indices along some axis (default: True).

            Returns
            -------
            ind : {integer, tuple, array}
                Index of the minimum field value being an integer for
                one-dimensional fields, a tuple for multi-dimensional fields,
                and an array in case minima along some axis are requested.

            See Also
            --------
            np.argmax, np.argmin

        """
        if split:
csongor's avatar
csongor committed
1190
            return self._unary_operation(self.get_val(), op='argmin_nonflat',
csongor's avatar
csongor committed
1191
                                         **kwargs)
csongor's avatar
csongor committed
1192
        else:
csongor's avatar
csongor committed
1193
            return self._unary_operation(self.get_val(), op='argmin',
csongor's avatar
csongor committed
1194
                                         **kwargs)
csongor's avatar
csongor committed
1195

1196
    def argmax(self, split=False, **kwargs):
csongor's avatar
csongor committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
        """
            Returns the index of the maximum field value.

            Parameters
            ----------
            split : bool
                Whether to split (unravel) the flat index or not; does not
                apply to multiple indices along some axis (default: True).

            Returns
            -------
            ind : {integer, tuple, array}
                Index of the maximum field value being an integer for
                one-dimensional fields, a tuple for multi-dimensional fields,
                and an array in case maxima along some axis are requested.

            See Also
            --------
            np.argmax, np.argmin

        """
        if split:
csongor's avatar
csongor committed
1219
            return self._unary_operation(self.get_val(), op='argmax_nonflat',
csongor's avatar
csongor committed
1220
                                         **kwargs)
csongor's avatar
csongor committed
1221
        else:
csongor's avatar
csongor committed
1222
            return self._unary_operation(self.get_val(), op='argmax',
csongor's avatar
csongor committed
1223
                                         **kwargs)
csongor's avatar
csongor committed
1224
1225
1226
1227
1228

    # TODO: Implement the full range of unary and binary operotions

    def __pos__(self):
        new_field = self.copy_empty()
csongor's avatar
csongor committed
1229
        new_val = self._unary_operation(self.get_val(), op='pos')
csongor's avatar
csongor committed
1230
1231
1232
1233
1234
        new_field.set_val(new_val=new_val)
        return new_field

    def __neg__(self):
        new_field = self.copy_empty()
csongor's avatar
csongor committed
1235
        new_val = self._unary_operation(self.get_val(), op='neg')
csongor's avatar
csongor committed
1236
1237
1238
1239
1240
        new_field.set_val(new_val=new_val)
        return new_field

    def __abs__(self):
        new_field = self.copy_empty()
csongor's avatar
csongor committed
1241
        new_val = self._unary_operation(self.get_val(), op='abs')
csongor's avatar
csongor committed
1242
1243
1244
1245
1246
        new_field.set_val(new_val=new_val)
        return new_field

    def _binary_helper(self, other, op='None', inplace=False):
        # if other is a field, make sure that the domains match
1247
1248
        if isinstance(other, Field):
            other = Field(domain=self.domain,
csongor's avatar
csongor committed
1249
1250
1251
1252
1253
1254
1255
1256
1257
                          val=other,
                          codomain=self.codomain,
                          copy=False)
        try:
            other_val = other.get_val()
        except AttributeError:
            other_val = other

        # bring other_val into the right shape
1258
        other_val = self._cast_to_d2o(other_val)
csongor's avatar
csongor committed
1259

csongor's avatar
csongor committed
1260
        new_val = map(
1261
            lambda z1, z2: self._binary_operation(z1, z2, op=op, cast=0),
csongor's avatar
csongor committed
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
            self.get_val(),
            other_val)

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

        working_field.set_val(new_val=new_val)
        return working_field

csongor's avatar
csongor committed
1273
    def _unary_operation(self, x, op='None', axis=None, **kwargs):
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        """
        x must be a numpy array which is compatible with the space!
        Valid operations are

        """
        translation = {'pos': lambda y: getattr(y, '__pos__')(),
                       'neg': lambda y: getattr(y, '__neg__')(),
                       'abs': lambda y: getattr(y, '__abs__')(),
                       'real': lambda y: getattr(y, 'real'),
                       'imag': lambda y: getattr(y, 'imag'),
                       'nanmin': lambda y: getattr(y, 'nanmin')(axis=axis),
                       'amin': lambda y: getattr(y, 'amin')(axis=axis),
                       'nanmax': lambda y: getattr(y, 'nanmax')(axis=axis),
                       'amax': lambda y: getattr(y, 'amax')(axis=axis),
                       'median': lambda y: getattr(y, 'median')(axis=axis),
                       'mean': lambda y: getattr(y, 'mean')(axis=axis),
                       'std': lambda y: getattr(y, 'std')(axis=axis),
                       'var': lambda y: getattr(y, 'var')(axis=axis),
1292
1293
1294
                       'argmin_nonflat': lambda y: getattr(y,
                                                           'argmin_nonflat')(
                                                               axis=axis),
1295
                       'argmin': lambda y: getattr(y, 'argmin')(axis=axis),
1296
1297
1298
                       'argmax_nonflat': lambda y: getattr(y,
                                                           'argmax_nonflat')(
                                                               axis=axis),
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
                       'argmax': lambda y: getattr(y, 'argmax')(axis=axis),
                       'conjugate': lambda y: getattr(y, 'conjugate')(),
                       'sum': lambda y: getattr(y, 'sum')(axis=axis),
                       'prod': lambda y: getattr(y, 'prod')(axis=axis),
                       'unique': lambda y: getattr(y, 'unique')(),
                       'copy': lambda y: getattr(y, 'copy')(),
                       'copy_empty': lambda y: getattr(y, 'copy_empty')(),
                       'isnan': lambda y: getattr(y, 'isnan')(),
                       'isinf': lambda y: getattr(y, 'isinf')(),
                       'isfinite': lambda y: getattr(y, 'isfinite')(),
                       'nan_to_num': lambda y: getattr(y, 'nan_to_num')(),
                       'all': lambda y: getattr(y, 'all')(axis=axis),
                       'any': lambda y: getattr(y, 'any')(axis=axis),
                       'None': lambda y: y}

        return translation[op](x, **kwargs)

1316
    def _binary_operation(self, x, y, op='None', cast=0):
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347

        translation = {'add': lambda z: getattr(z, '__add__'),
                       'radd': lambda z: getattr(z, '__radd__'),
                       'iadd': lambda z: getattr(z, '__iadd__'),
                       'sub': lambda z: getattr(z, '__sub__'),
                       'rsub': lambda z: getattr(z, '__rsub__'),
                       'isub': lambda z: getattr(z, '__isub__'),
                       'mul': lambda z: getattr(z, '__mul__'),
                       'rmul': lambda z: getattr(z, '__rmul__'),
                       'imul': lambda z: getattr(z, '__imul__'),
                       'div': lambda z: getattr(z, '__div__'),
                       'rdiv': lambda z: getattr(z, '__rdiv__'),
                       'idiv': lambda z: getattr(z, '__idiv__'),
                       'pow': lambda z: getattr(z, '__pow__'),
                       'rpow': lambda z: getattr(z, '__rpow__'),
                       'ipow': lambda z: getattr(z, '__ipow__'),
                       'ne': lambda z: getattr(z, '__ne__'),
                       'lt': lambda z: getattr(z, '__lt__'),
                       'le': lambda z: getattr(z, '__le__'),
                       'eq': lambda z: getattr(z, '__eq__'),
                       'ge': lambda z: getattr(z, '__ge__'),
                       'gt': lambda z: getattr(z, '__gt__'),
                       'None': lambda z: lambda u: u}

        if (cast & 1) != 0:
            x = self.cast(x)
        if (cast & 2) != 0:
            y = self.cast(y)

        return translation[op](x)(y)

csongor's avatar
csongor committed
1348
1349
    def __add__(self, other):
        return self._binary_helper(other, op='add')
1350

csongor's avatar
csongor committed
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
    __radd__ = __add__

    def __iadd__(self, other):
        return self._binary_helper(other, op='iadd', inplace=True)

    def __sub__(self, other):
        return self._binary_helper(other, op='sub')

    def __rsub__(self, other):
        return self._binary_helper(other, op='rsub')

    def __isub__(self, other):
        return self._binary_helper(other, op='isub', inplace=True)

    def __mul__(self, other):
        return self._binary_helper(other, op='mul')
1367

csongor's avatar
csongor committed
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
    __rmul__ = __mul__

    def __imul__(self, other):
        return self._binary_helper(other, op='imul', inplace=True)

    def __div__(self, other):
        return self._binary_helper(other, op='div')

    def __rdiv__(self, other):
        return self._binary_helper(other, op='rdiv')

    def __idiv__(self, other):
        return self._binary_helper(other, op='idiv', inplace=True)
1381

csongor's avatar
csongor committed
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
    __truediv__ = __div__
    __itruediv__ = __idiv__

    def __pow__(self, other):
        return self._binary_helper(other, op='pow')

    def __rpow__(self, other):
        return self._binary_helper(other, op='rpow')

    def __ipow__(self, other):
        return self._binary_helper(other, op='ipow', inplace=True)

    def __lt__(self, other):
        return self._binary_helper(other, op='lt')

    def __le__(self, other):
        return self._binary_helper(other, op='le')

    def __ne__(self, other):
        if other is None:
            return True
        else:
            return self._binary_helper(other, op='ne')

    def __eq__(self, other):
        if other is None:
            return False
        else:
            return self._binary_helper(other, op='eq')

    def __ge__(self, other):
        return self._binary_helper(other, op='ge')

    def __gt__(self, other):
        return self._binary_helper(other, op='gt')

1418

1419
class EmptyField(Field):
csongor's avatar
csongor committed
1420
1421
    def __init__(self):
        pass