README.rst 4.9 KB
Newer Older
Marco Selig's avatar
Marco Selig committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
NIFTY -- Numerical Information Field Theory
===========================================

**NIFTY** project homepage: `<http://www.mpa-garching.mpg.de/ift/nifty/>`_

Summary
-------

Description
...........

**NIFTY**, "\ **N**\umerical **I**\nformation **F**\ield **T**\heor\ **y**\ ",
is a versatile library designed to enable the development of signal inference
algorithms that operate regardless of the underlying spatial grid and its
resolution. Its object-oriented framework is written in Python, although it
accesses libraries written in Cython, C++, and C for efficiency.

NIFTY offers a toolkit that abstracts discretized representations of continuous
spaces, fields in these spaces, and operators acting on fields into classes.
Thereby, the correct normalization of operations on fields is taken care of
automatically without concerning the user. This allows for an abstract
formulation and programming of inference algorithms, including those derived
within information field theory. Thus, NIFTY permits its user to rapidly
prototype algorithms in 1D, and then apply the developed code in
higher-dimensional settings of real world problems. The set of spaces on which
NIFTY operates comprises point sets, *n*-dimensional regular grids, spherical
spaces, their harmonic counterparts, and product spaces constructed as
combinations of those.

Class & Feature Overview
........................

The NIFTY library features three main classes: **spaces** that represent
certain grids, **fields** that are defined on spaces, and **operators** that
apply to fields.

- `Spaces <http://www.mpa-garching.mpg.de/ift/nifty/space.html>`_

    - ``point_space`` -- unstructured list of points 
    - ``rg_space`` -- *n*-dimensional regular Euclidean grid
    - ``lm_space`` -- spherical harmonics
    - ``gl_space`` -- Gauss-Legendre grid on the 2-sphere
    - ``hp_space`` -- `HEALPix <http://sourceforge.net/projects/healpix/>`_
        grid on the 2-sphere
    - ``nested_space`` -- arbitrary product of grids

- `Fields <http://www.mpa-garching.mpg.de/ift/nifty/field.html>`_

    - ``field`` -- generic class for (discretized) fields::

    field.cast_domain   field.hat           field.power        field.smooth
    field.conjugate     field.inverse_hat   field.pseudo_dot   field.tensor_dot
    field.dim           field.norm          field.set_target   field.transform
    field.dot           field.plot          field.set_val      field.weight

- `Operators <http://www.mpa-garching.mpg.de/ift/nifty/operator.html>`_

    - ``diagonal_operator`` -- purely diagonal matrices in a specified basis
    - ``projection_operator`` -- projections onto subsets of a specified basis
    - ``vecvec_operator`` -- matrices derived from the outer product of a
        vector
    - ``response_operator`` -- exemplary responses that include a convolution,
        masking and projection
    - (and more)

- (and more)

*Parts of this summary are taken* [1]_.

Installation
------------

Requirements
............

- `Python <http://www.python.org/>`_ (v2.7.x)

    - `NumPy <http://www.numpy.org/>`_ and `SciPy <http://www.scipy.org/>`_
    - `matplotlib <http://matplotlib.org/>`_
    - `multiprocessing <http://docs.python.org/2/library/multiprocessing.html>`_
        (standard library)

- `GFFT <https://github.com/mrbell/gfft>`_ (v0.1.0) -- Generalized Fast Fourier
    Transformations for Python

- `HEALPy <https://github.com/healpy/healpy>`_ (v1.4 without openmp) -- A
    Python wrapper for `HEALPix <http://sourceforge.net/projects/healpix/>`_
- `libsharp-wrapper <https://github.com/mselig/libsharp-wrapper>`_ (v0.1.2
    without openmp) -- A Python wrapper for the
    `libsharp <http://sourceforge.net/projects/libsharp/>`_ library

Download
........

The latest release is tagged **v0.2.0** and is available as a source package
at `<https://github.com/mselig/nifty/tags>`_. The current version can be
obtained by cloning the repository::

    git clone git://github.com/mselig/nifty.git
    cd nifty

Installation
............

NIFTY is installed using Distutils by running the following command::

    python setup.py install

Alternatively, a private or user specific installation can be done by::

    python setup.py install --user
    python setup.py install --install-lib=/SOMEWHERE

Acknowledgement
---------------

Please, acknowledge the use of NIFTY in your publication(s) by using a phrase
such as the following:

*"Some of the results in this publication have been derived using the NIFTY
[M. Selig et al., 2013] package."*

References
..........

.. [1] M. Selig et al., "NIFTY -- Numerical Information Field Theory -- a
    versatile Python library for signal inference", submitted to IEEE, 2013;
    `arXiv:XXXX.XXXX <http://www.arxiv.org/abs/XXXX.XXXX>`_

Release Notes
-------------

The NIFTY package is licensed under the
`GPLv3 <http://www.gnu.org/licenses/gpl.html>`_ and is distributed *without any
warranty*.

**NIFTY** project homepage: `<http://www.mpa-garching.mpg.de/ift/nifty/>`_