nifty_rg.py 72.6 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2015 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
31
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
32
33
34

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
35

36
import itertools
Marco Selig's avatar
Marco Selig committed
37
import numpy as np
38
import os
39
from scipy.special import erf
Marco Selig's avatar
Marco Selig committed
40
41
42
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
Ultimanet's avatar
Ultimanet committed
43

44
45
from d2o import STRATEGIES as DISTRIBUTION_STRATEGIES

46
47
from nifty.space import Space
from nifty.field import Field
csongor's avatar
csongor committed
48

49
import nifty_fft
50
51
52
from nifty.config import about,\
                         nifty_configuration as gc,\
                         dependency_injector as gdi
Ultimanet's avatar
Ultimanet committed
53
from nifty.nifty_paradict import rg_space_paradict
54
55
from nifty.nifty_power_indices import rg_power_indices
from nifty.nifty_random import random
Ultima's avatar
Ultima committed
56
import nifty.nifty_utilities as utilities
57

Ultima's avatar
Ultima committed
58
MPI = gdi[gc['mpi_module']]
59
RG_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Ultimanet's avatar
Ultimanet committed
60

Marco Selig's avatar
Marco Selig committed
61

csongor's avatar
csongor committed
62
class RgSpace(Space):
Marco Selig's avatar
Marco Selig committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

        Parameters
        ----------
        num : {int, numpy.ndarray}
            Number of gridpoints or numbers of gridpoints along each axis.
        naxes : int, *optional*
            Number of axes (default: None).
        zerocenter : {bool, numpy.ndarray}, *optional*
            Whether the Fourier zero-mode is located in the center of the grid
            (or the center of each axis speparately) or not (default: True).
        hermitian : bool, *optional*
            Whether the fields living in the space follow hermitian symmetry or
            not (default: True).
        purelyreal : bool, *optional*
            Whether the field values are purely real (default: True).
        dist : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis (default: None).
        fourier : bool, *optional*
            Whether the space represents a Fourier or a position grid
            (default: False).

        Notes
        -----
        Only even numbers of grid points per axis are supported.
        The basis transformations between position `x` and Fourier mode `k`
        rely on (inverse) fast Fourier transformations using the
        :math:`exp(2 \pi i k^\dagger x)`-formulation.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing information on the axes of the
            space in the following form: The first entries give the grid-points
            along each axis in reverse order; the next entry is 0 if the
            fields defined on the space are purely real-valued, 1 if they are
            hermitian and complex, and 2 if they are not hermitian, but
            complex-valued; the last entries hold the information on whether
            the axes are centered on zero or not, containing a one for each
            zero-centered axis and a zero for each other one, in reverse order.
110
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
111
112
113
114
115
116
117
118
119
120
121
122
            Data type of the field values for a field defined on this space,
            either ``numpy.float64`` or ``numpy.complex128``.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for regular grids.
        vol : numpy.ndarray
            One-dimensional array containing the distances between two grid
            points along each axis, in reverse order. By default, the total
            length of each axis is assumed to be one.
        fourier : bool
            Whether or not the grid represents a Fourier basis.
    """
123
    epsilon = 0.0001  # relative precision for comparisons
Marco Selig's avatar
Marco Selig committed
124

125
    def __init__(self, shape, zerocenter=False, complexity=0, distances=None,
csongor's avatar
csongor committed
126
                 harmonic=False, fft_module=gc['fft_module']):
Marco Selig's avatar
Marco Selig committed
127
128
129
130
131
132
133
134
135
136
137
138
        """
            Sets the attributes for an rg_space class instance.

            Parameters
            ----------
            num : {int, numpy.ndarray}
                Number of gridpoints or numbers of gridpoints along each axis.
            naxes : int, *optional*
                Number of axes (default: None).
            zerocenter : {bool, numpy.ndarray}, *optional*
                Whether the Fourier zero-mode is located in the center of the
                grid (or the center of each axis speparately) or not
Ultimanet's avatar
Ultimanet committed
139
                (default: False).
Marco Selig's avatar
Marco Selig committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
            hermitian : bool, *optional*
                Whether the fields living in the space follow hermitian
                symmetry or not (default: True).
            purelyreal : bool, *optional*
                Whether the field values are purely real (default: True).
            dist : {float, numpy.ndarray}, *optional*
                Distance between two grid points along each axis
                (default: None).
            fourier : bool, *optional*
                Whether the space represents a Fourier or a position grid
                (default: False).

            Returns
            -------
            None
        """
156
        self._cache_dict = {'check_codomain': {}}
157
        self.paradict = rg_space_paradict(shape=shape,
158
159
                                          complexity=complexity,
                                          zerocenter=zerocenter)
160
        # set dtype
161
        if self.paradict['complexity'] == 0:
162
            self.dtype = np.dtype('float64')
Marco Selig's avatar
Marco Selig committed
163
        else:
164
            self.dtype = np.dtype('complex128')
165

166
        # set volume/distances
167
168
169
170
171
        naxes = len(self.paradict['shape'])
        if distances is None:
            distances = 1 / np.array(self.paradict['shape'], dtype=np.float)
        elif np.isscalar(distances):
            distances = np.ones(naxes, dtype=np.float) * distances
Marco Selig's avatar
Marco Selig committed
172
        else:
173
174
175
176
            distances = np.array(distances, dtype=np.float)
            if np.size(distances) == 1:
                distances = distances * np.ones(naxes, dtype=np.float)
            if np.size(distances) != naxes:
177
                raise ValueError(about._errors.cstring(
178
179
180
                    "ERROR: size mismatch ( " + str(np.size(distances)) +
                    " <> " + str(naxes) + " )."))
        if np.any(distances <= 0):
181
            raise ValueError(about._errors.cstring(
182
                "ERROR: nonpositive distance(s)."))
Marco Selig's avatar
Marco Selig committed
183

184
        self.distances = tuple(distances)
185
186
187
        self.harmonic = bool(harmonic)
        self.discrete = False

188
189
        # Initializes the fast-fourier-transform machine, which will be used
        # to transform the space
Ultima's avatar
Ultima committed
190
        if not gc.validQ('fft_module', fft_module):
191
            about.warnings.cprint("WARNING: fft_module set to default.")
Ultima's avatar
Ultima committed
192
193
            fft_module = gc['fft_module']
        self.fft_machine = nifty_fft.fft_factory(fft_module)
194
195
196

        # Initialize the power_indices object which takes care of kindex,
        # pindex, rho and the pundex for a given set of parameters
csongor's avatar
csongor committed
197
198

        # TODO harmonic = True doesn't work yet
199
        if self.harmonic:
200
            self.power_indices = rg_power_indices(
201
                    shape=self.shape,
202
                    dgrid=distances,
203
204
                    zerocentered=self.paradict['zerocenter'],
                    allowed_distribution_strategies=RG_DISTRIBUTION_STRATEGIES)
205

206
207
    @property
    def para(self):
208
        temp = np.array(self.paradict['shape'] +
209
210
                        [self.paradict['complexity']] +
                        self.paradict['zerocenter'], dtype=int)
211
        return temp
212

213
214
    @para.setter
    def para(self, x):
215
        self.paradict['shape'] = x[:(np.size(x) - 1) // 2]
216
217
        self.paradict['zerocenter'] = x[(np.size(x) + 1) // 2:]
        self.paradict['complexity'] = x[(np.size(x) - 1) // 2]
Ultimanet's avatar
Ultimanet committed
218

Ultima's avatar
Ultima committed
219
220
221
    def __hash__(self):
        result_hash = 0
        for (key, item) in vars(self).items():
Ultima's avatar
Ultima committed
222
            if key in ['_cache_dict', 'fft_machine', 'power_indices']:
Ultima's avatar
Ultima committed
223
224
225
226
                continue
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

227
228
229
230
231
232
233
234
235
236
237
    # __identiftier__ returns an object which contains all information needed
    # to uniquely identify a space. It returns a (immutable) tuple which
    # therefore can be compared.
    # The rg_space version of __identifier__ filters out the vars-information
    # which is describing the rg_space's structure
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
Ultima's avatar
Ultima committed
238
                if ii[0] not in ['_cache_dict', 'fft_machine',
csongor's avatar
csongor committed
239
                                 'power_indices']]
240
241
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))
Ultimanet's avatar
Ultimanet committed
242

243
    def copy(self):
csongor's avatar
csongor committed
244
        return RgSpace(shape=self.paradict['shape'],
245
246
                        complexity=self.paradict['complexity'],
                        zerocenter=self.paradict['zerocenter'],
247
                        distances=self.distances,
248
                        harmonic=self.harmonic,
csongor's avatar
csongor committed
249
                        fft_module=self.fft_machine.name)
250

251
252
    @property
    def shape(self):
253
        return tuple(self.paradict['shape'])
Marco Selig's avatar
Marco Selig committed
254

255
    def complement_cast(self, x, axis=None, hermitianize=True):
csongor's avatar
csongor committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        if axis is None:
            if x is not None and hermitianize and self.paradict['complexity']\
                    == 1 and not x.hermitian:
                about.warnings.cflush(
                     "WARNING: Data gets hermitianized. This operation is " +
                     "extremely expensive\n")
                x = utilities.hermitianize(x)
        else:
            # TODO hermitianize only on specific axis
            if x is not None and hermitianize and self.paradict['complexity']\
                    == 1 and not x.hermitian:
                about.warnings.cflush(
                     "WARNING: Data gets hermitianized. This operation is " +
                     "extremely expensive\n")
                x = utilities.hermitianize(x)
        return x
ultimanet's avatar
ultimanet committed
272

273
    def enforce_power(self, spec, size=None, kindex=None, codomain=None,
Ultima's avatar
Ultima committed
274
                      **kwargs):
Marco Selig's avatar
Marco Selig committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        """
            Provides a valid power spectrum array from a given object.

            Parameters
            ----------
            spec : {float, list, numpy.ndarray, nifty.field, function}
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.

            Returns
            -------
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band.
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
299
300
301
                Flag specifying if the spectral binning is performed on
                logarithmic scale or not; if set, the number of used bins is
                set automatically (if not given otherwise); by default no
302
                binning is done (default: None).
Marco Selig's avatar
Marco Selig committed
303
            nbin : integer, *optional*
304
                Number of used spectral bins; if given `log` is set to
305
306
                ``False``; iintegers below the minimum of 3 induce an automatic
                setting; by default no binning is done (default: None).
Marco Selig's avatar
Marco Selig committed
307
308
309
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
310
                (default: None).
Marco Selig's avatar
Marco Selig committed
311
        """
312
313
314
315
316
317
318

        # Setting up the local variables: kindex
        # The kindex is only necessary if spec is a function or if
        # the size is not set explicitly
        if kindex is None and (size is None or callable(spec)):
            # Determine which space should be used to get the kindex
            if self.harmonic:
319
320
                kindex_supply_space = self
            else:
321
322
                # Check if the given codomain is compatible with the space
                try:
323
324
325
                    assert(self.check_codomain(codomain))
                    kindex_supply_space = codomain
                except(AssertionError):
326
327
328
329
                    about.warnings.cprint("WARNING: Supplied codomain is " +
                                          "incompatible. Generating a " +
                                          "generic codomain. This can " +
                                          "be expensive!")
330
                    kindex_supply_space = self.get_codomain()
Ultima's avatar
Ultima committed
331

332
            kindex = kindex_supply_space.\
Ultima's avatar
Ultima committed
333
                power_indices.get_index_dict(**kwargs)['kindex']
334

335
336
337
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)
338

Ultima's avatar
Ultima committed
339
    def _check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
340
        """
341
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
342
343
344

            Parameters
            ----------
345
346
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
347
348
349

            Returns
            -------
350
351
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
352
        """
353
354
        if codomain is None:
            return False
355

csongor's avatar
csongor committed
356
        if not isinstance(codomain, RgSpace):
357
358
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty rg_space."))
359

360
        # check number of number and size of axes
361
362
        if not np.all(np.array(self.paradict['shape']) ==
                      np.array(codomain.paradict['shape'])):
363
            return False
Ultima's avatar
Ultima committed
364

365
366
367
        # check harmonic flag
        if self.harmonic == codomain.harmonic:
            return False
Ultima's avatar
Ultima committed
368

369
370
371
372
        # check complexity-type
        # prepare the shorthands
        dcomp = self.paradict['complexity']
        cocomp = codomain.paradict['complexity']
Ultima's avatar
Ultima committed
373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
        # Case 1: if the domain is copmleteley complex
        # -> the codomain must be complex, too
        if dcomp == 2:
            if cocomp != 2:
                return False
        # Case 2: domain is hermitian
        # -> codmomain can be real. If it is marked as hermitian or even
        # fully complex, a warning is raised
        elif dcomp == 1:
            if cocomp > 0:
                about.warnings.cprint("WARNING: Unrecommended codomain! " +
                                      "The domain is hermitian, hence the " +
                                      "codomain should be restricted to " +
                                      "real values!")
Ultima's avatar
Ultima committed
388

389
390
391
392
393
394
395
396
397
398
        # Case 3: domain is real
        # -> codmain should be hermitian
        elif dcomp == 0:
            if cocomp == 2:
                about.warnings.cprint("WARNING: Unrecommended codomain! " +
                                      "The domain is real, hence the " +
                                      "codomain should be restricted to " +
                                      "hermitian configurations!")
            elif cocomp == 0:
                return False
Ultima's avatar
Ultima committed
399

400
401
        # Check if the distances match, i.e. dist'=1/(num*dist)
        if not np.all(
402
                np.absolute(np.array(self.paradict['shape']) *
403
404
405
                            np.array(self.distances) *
                            np.array(codomain.distances) - 1) < self.epsilon):
            return False
Ultima's avatar
Ultima committed
406

407
        return True
408

409
    def get_codomain(self, cozerocenter=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
410
        """
411
412
413
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  either a shifted grid or a Fourier conjugate
            grid.
Marco Selig's avatar
Marco Selig committed
414
415
416

            Parameters
            ----------
417
418
419
420
421
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
                (default: None).
Marco Selig's avatar
Marco Selig committed
422
423
424

            Returns
            -------
425
426
            codomain : nifty.rg_space
                A compatible codomain.
Marco Selig's avatar
Marco Selig committed
427

428
429
430
431
432
433
            Notes
            -----
            Possible arguments for `coname` are ``'f'`` in which case the
            codomain arises from a Fourier transformation, ``'i'`` in which
            case it arises from an inverse Fourier transformation.If no
            `coname` is given, the Fourier conjugate grid is produced.
Marco Selig's avatar
Marco Selig committed
434
        """
435
        naxes = len(self.shape)
436
437
438
439
440
441
442
        # Parse the cozerocenter input
        if(cozerocenter is None):
            cozerocenter = self.paradict['zerocenter']
        # if the input is something scalar, cast it to a boolean
        elif(np.isscalar(cozerocenter)):
            cozerocenter = bool(cozerocenter)
        # if it is not a scalar...
Marco Selig's avatar
Marco Selig committed
443
        else:
444
445
446
447
448
449
450
451
452
453
454
            # ...cast it to a numpy array of booleans
            cozerocenter = np.array(cozerocenter, dtype=np.bool)
            # if it was a list of length 1, extract the boolean
            if(np.size(cozerocenter) == 1):
                cozerocenter = np.asscalar(cozerocenter)
            # if the length of the input does not match the number of
            # dimensions, raise an exception
            elif(np.size(cozerocenter) != naxes):
                raise ValueError(about._errors.cstring(
                    "ERROR: size mismatch ( " +
                    str(np.size(cozerocenter)) + " <> " + str(naxes) + " )."))
Marco Selig's avatar
Marco Selig committed
455

456
        # Set up the initialization variables
457
458
459
        shape = self.paradict['shape']
        distances = 1 / (np.array(self.paradict['shape']) *
                         np.array(self.distances))
460
        fft_module = self.fft_machine.name
461
        complexity = {0: 1, 1: 0, 2: 2}[self.paradict['complexity']]
462
        harmonic = bool(not self.harmonic)
Marco Selig's avatar
Marco Selig committed
463

csongor's avatar
csongor committed
464
        new_space = RgSpace(shape,
465
466
                             zerocenter=cozerocenter,
                             complexity=complexity,
467
                             distances=distances,
468
                             harmonic=harmonic,
csongor's avatar
csongor committed
469
                             fft_module=fft_module)
470
        return new_space
Marco Selig's avatar
Marco Selig committed
471

472
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account possible complex-valuedness
            and hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
491
492
                - "gau" (normal distribution with zero-mean and a given
                    standard
Marco Selig's avatar
Marco Selig committed
493
494
495
496
497
498
499
500
501
502
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
503
504
            spec : {scalar, list, numpy.ndarray, nifty.field, function},
                *optional*
Marco Selig's avatar
Marco Selig committed
505
506
507
508
509
510
511
                Power spectrum (default: 1).
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band (default: None).
            codomain : nifty.rg_space, *optional*
Ultimanet's avatar
Ultimanet committed
512
                A compatible codomain (default: None).
Marco Selig's avatar
Marco Selig committed
513
            log : bool, *optional*
514
515
                Flag specifying if the spectral binning is performed on
                    logarithmic
Marco Selig's avatar
Marco Selig committed
516
517
518
519
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
520
521
                Number of used spectral bins; if given `log` is set to
                    ``False``;
Marco Selig's avatar
Marco Selig committed
522
523
524
525
526
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
527
                (default: None).
Ultimanet's avatar
Ultimanet committed
528
            vmin : float, *optional*
Marco Selig's avatar
Marco Selig committed
529
530
531
532
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
533
        # Parse the keyword arguments
534
        arg = random.parse_arguments(self, **kwargs)
535

536
537
538
        if arg is None:
            return self.cast(0)

Ultima's avatar
Ultima committed
539
540
        # Should the output be hermitianized?
        hermitianizeQ = (self.paradict['complexity'] == 1)
Ultimanet's avatar
Ultimanet committed
541

542
        # Case 1: uniform distribution over {-1,+1}/{1,i,-1,-i}
Ultima's avatar
Ultima committed
543
        if arg['random'] == 'pm1' and not hermitianizeQ:
csongor's avatar
csongor committed
544
            sample = super(RgSpace, self).get_random_values(**arg)
545

Ultima's avatar
Ultima committed
546
        elif arg['random'] == 'pm1' and hermitianizeQ:
547
            sample = self.get_random_values(random='uni', vmin=-1, vmax=1)
Ultima's avatar
Ultima committed
548

549
            if issubclass(sample.dtype.type, np.complexfloating):
Ultima's avatar
Ultima committed
550
551
552
553
554
                temp_data = sample.copy()
                sample[temp_data.real >= 0.5] = 1
                sample[(temp_data.real >= 0) * (temp_data.real < 0.5)] = -1
                sample[(temp_data.real < 0) * (temp_data.imag >= 0)] = 1j
                sample[(temp_data.real < 0) * (temp_data.imag < 0)] = -1j
555
556
                # Set the mirroring invariant points to real values
                product_list = []
557
                for s in self.shape:
558
559
560
561
562
563
564
565
566
567
568
569
                    # if the particular dimension has even length, set
                    # also the middle of the array to a real value
                    if s % 2 == 0:
                        product_list += [[0, s/2]]
                    else:
                        product_list += [[0]]

                for i in itertools.product(*product_list):
                    sample[i] = {1: 1,
                                 -1: -1,
                                 1j: 1,
                                 -1j: -1}[sample[i]]
Ultimanet's avatar
Ultimanet committed
570
            else:
Ultima's avatar
Ultima committed
571
572
                sample[sample >= 0] = 1
                sample[sample < 0] = -1
573

Ultima's avatar
Ultima committed
574
575
576
577
578
            try:
                sample.hermitian = True
            except(AttributeError):
                pass

579
        # Case 2: normal distribution with zero-mean and a given standard
580
        #         deviation or variance
Ultima's avatar
Ultima committed
581
        elif arg['random'] == 'gau':
csongor's avatar
csongor committed
582
            sample = super(RgSpace, self).get_random_values(**arg)
583

584
            if hermitianizeQ:
Ultima's avatar
Ultima committed
585
                sample = utilities.hermitianize_gaussian(sample)
Ultimanet's avatar
Ultimanet committed
586

587
        # Case 3: uniform distribution
Ultima's avatar
Ultima committed
588
        elif arg['random'] == "uni" and not hermitianizeQ:
csongor's avatar
csongor committed
589
            sample = super(RgSpace, self).get_random_values(**arg)
590

Ultima's avatar
Ultima committed
591
        elif arg['random'] == "uni" and hermitianizeQ:
592
593
594
595
596
            # For a hermitian uniform sample, generate a gaussian one
            # and then convert it to a uniform one
            sample = self.get_random_values(random='gau')
            # Use the cummulative of the gaussian, the error function in order
            # to transform it to a uniform distribution.
597
            if issubclass(sample.dtype.type, np.complexfloating):
Ultima's avatar
Ultima committed
598
                def temp_erf(x):
599
                    return erf(x.real) + 1j * erf(x.imag)
Ultimanet's avatar
Ultimanet committed
600
            else:
Ultima's avatar
Ultima committed
601
                def temp_erf(x):
602
                    return erf(x / np.sqrt(2))
Ultima's avatar
Ultima committed
603

604
            sample.apply_scalar_function(function=temp_erf, inplace=True)
605
606

            # Shift and stretch the uniform distribution into the given limits
607
            # sample = (sample + 1)/2 * (vmax-vmin) + vmin
Ultima's avatar
Ultima committed
608
609
            vmin = arg['vmin']
            vmax = arg['vmax']
610
611
            sample *= (vmax - vmin) / 2.
            sample += 1 / 2. * (vmax + vmin)
Marco Selig's avatar
Marco Selig committed
612

Ultima's avatar
Ultima committed
613
614
615
616
617
            try:
                sample.hermitian = True
            except(AttributeError):
                pass

Ultima's avatar
Ultima committed
618
619
620
621
        elif(arg['random'] == "syn"):
            spec = arg['spec']
            kpack = arg['kpack']
            harmonic_domain = arg['harmonic_domain']
Ultima's avatar
Ultima committed
622
623
624
625
626
            lnb_dict = {}
            for name in ('log', 'nbin', 'binbounds'):
                if arg[name] != 'default':
                    lnb_dict[name] = arg[name]

627
628
629
            # Check whether there is a kpack available or not.
            # kpack is only used for computing kdict and extracting kindex
            # If not, take kdict and kindex from the fourier_domain
630
            if kpack is None:
Ultimanet's avatar
Ultimanet committed
631
                power_indices =\
Ultima's avatar
Ultima committed
632
                    harmonic_domain.power_indices.get_index_dict(**lnb_dict)
633

Ultimanet's avatar
Ultimanet committed
634
635
636
637
638
639
                kindex = power_indices['kindex']
                kdict = power_indices['kdict']
                kpack = [power_indices['pindex'], power_indices['kindex']]
            else:
                kindex = kpack[1]
                kdict = harmonic_domain.power_indices.\
640
641
642
643
644
645
646
647
                    _compute_kdict_from_pindex_kindex(kpack[0], kpack[1])

            # draw the random samples
            # Case 1: self is a harmonic space
            if self.harmonic:
                # subcase 1: self is real
                # -> simply generate a random field in fourier space and
                # weight the entries accordingly to the powerspectrum
Ultimanet's avatar
Ultimanet committed
648
                if self.paradict['complexity'] == 0:
Ultima's avatar
Ultima committed
649
650
651
                    sample = self.get_random_values(random='gau',
                                                    mean=0,
                                                    std=1)
652
653
654
655
656
                # subcase 2: self is hermitian but probably complex
                # -> generate a real field (in position space) and transform
                # it to harmonic space -> field in harmonic space is
                # hermitian. Now weight the modes accordingly to the
                # powerspectrum.
Ultimanet's avatar
Ultimanet committed
657
658
                elif self.paradict['complexity'] == 1:
                    temp_codomain = self.get_codomain()
Ultima's avatar
Ultima committed
659
660
661
                    sample = temp_codomain.get_random_values(random='gau',
                                                             mean=0,
                                                             std=1)
662
663
664
665
666
667

                    # In order to get the normalisation right, the sqrt
                    # of self.dim must be divided out.
                    # Furthermore, the normalisation in the fft routine
                    # must be undone
                    # TODO: Insert explanation
668
                    sqrt_of_dim = np.sqrt(self.dim)
Ultimanet's avatar
Ultimanet committed
669
670
671
                    sample /= sqrt_of_dim
                    sample = temp_codomain.calc_weight(sample, power=-1)

672
                    # tronsform the random field to harmonic space
Ultimanet's avatar
Ultimanet committed
673
                    sample = temp_codomain.\
674
675
676
677
                        calc_transform(sample, codomain=self)

                    # ensure that the kdict and the harmonic_sample have the
                    # same distribution strategy
Ultima's avatar
Ultima committed
678
679
680
681
682
                    try:
                        assert(kdict.distribution_strategy ==
                               sample.distribution_strategy)
                    except AttributeError:
                        pass
683
684
685
686

                # subcase 3: self is fully complex
                # -> generate a complex random field in harmonic space and
                # weight the modes accordingly to the powerspectrum
Ultimanet's avatar
Ultimanet committed
687
                elif self.paradict['complexity'] == 2:
Ultima's avatar
Ultima committed
688
689
690
                    sample = self.get_random_values(random='gau',
                                                    mean=0,
                                                    std=1)
691

692
                # apply the powerspectrum renormalization
693
694
695
696
697
698
699
                # extract the local data from kdict
                local_kdict = kdict.get_local_data()
                rescaler = np.sqrt(
                    spec[np.searchsorted(kindex, local_kdict)])
                sample.apply_scalar_function(lambda x: x * rescaler,
                                             inplace=True)

700
            # Case 2: self is a position space
Ultimanet's avatar
Ultimanet committed
701
            else:
702
703
                # get a suitable codomain
                temp_codomain = self.get_codomain()
Ultimanet's avatar
Ultimanet committed
704

705
706
707
                # subcase 1: self is a real space.
                # -> generate a hermitian sample with the codomain in harmonic
                # space and make a fourier transformation.
Ultimanet's avatar
Ultimanet committed
708
                if self.paradict['complexity'] == 0:
709
                    # check that the codomain is hermitian
Ultimanet's avatar
Ultimanet committed
710
                    assert(temp_codomain.paradict['complexity'] == 1)
711
712
713
714

                # subcase 2: self is hermitian but probably complex
                # -> generate a real-valued random sample in fourier space
                # and transform it to real space
Ultimanet's avatar
Ultimanet committed
715
                elif self.paradict['complexity'] == 1:
716
717
                    # check that the codomain is real
                    assert(temp_codomain.paradict['complexity'] == 0)
Ultimanet's avatar
Ultimanet committed
718

719
720
721
722
723
724
                # subcase 3: self is fully complex
                # -> generate a complex-valued random sample in fourier space
                # and transform it to real space
                elif self.paradict['complexity'] == 2:
                    # check that the codomain is real
                    assert(temp_codomain.paradict['complexity'] == 2)
Ultimanet's avatar
Ultimanet committed
725

726
727
                # Get a hermitian/real/complex sample in harmonic space from
                # the codomain
Ultima's avatar
Ultima committed
728
729
730
731
732
                sample = temp_codomain.get_random_values(random='syn',
                                                         pindex=kpack[0],
                                                         kindex=kpack[1],
                                                         spec=spec,
                                                         codomain=self,
Ultima's avatar
Ultima committed
733
                                                         **lnb_dict)
734

735
                # Perform a fourier transform
Ultima's avatar
Ultima committed
736
                sample = temp_codomain.calc_transform(sample, codomain=self)
Ultimanet's avatar
Ultimanet committed
737
738

            if self.paradict['complexity'] == 1:
Ultima's avatar
Ultima committed
739
740
741
742
                try:
                    sample.hermitian = True
                except AttributeError:
                    pass
743

Ultimanet's avatar
Ultimanet committed
744
745
        else:
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
746
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
747

748
        return sample
Marco Selig's avatar
Marco Selig committed
749

750
    def calc_weight(self, x, axes=None, power=1):
Marco Selig's avatar
Marco Selig committed
751
752
753
754
755
756
757
758
759
        """
            Weights a given array with the pixel volumes to a given power.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
760
761
            axes : None, tuple
                Ignored in this case since it's a scalar operation.
Marco Selig's avatar
Marco Selig committed
762
763
764
765
766
767

            Returns
            -------
            y : numpy.ndarray
                Weighted array.
        """
768
769
        # weight
        x = x * self.get_weight(power=power)
Ultimanet's avatar
Ultimanet committed
770
        return x
Marco Selig's avatar
Marco Selig committed
771

772
    def get_weight(self, power=1):
773
        return reduce(lambda x, y: x * y, self.distances)**power
774

Jait Dixit's avatar
Jait Dixit committed
775
    def calc_transform(self, x, codomain=None, axes=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
776
777
778
779
780
781
782
783
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.rg_space, *optional*
784
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
785
                (default: None).
786
            axes : None, tuple
Jait Dixit's avatar
Jait Dixit committed
787
                Axes in the array which should be transformed.
Marco Selig's avatar
Marco Selig committed
788
789
790
791
792
793

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
794

795
        if codomain is None:
Ultimanet's avatar
Ultimanet committed
796
            codomain = self.get_codomain()
797
798

        # Check if the given codomain is suitable for the transformation
799
        if not self.check_codomain(codomain):
800
            raise ValueError(about._errors.cstring(
801
                "ERROR: unsupported codomain."))
802

803
        if codomain.harmonic:
804
            # correct for forward fft
805
            x = self.calc_weight(x, power=1)
806
807
808

        # Perform the transformation
        Tx = self.fft_machine.transform(val=x, domain=self, codomain=codomain,
Jait Dixit's avatar
Jait Dixit committed
809
                                        axes=axes, **kwargs)
810

811
        if not codomain.harmonic:
812
            # correct for inverse fft
Ultimanet's avatar
Ultimanet committed
813
814
            Tx = codomain.calc_weight(Tx, power=-1)

815
816
        return Tx

817
    def calc_smooth(self, x, sigma=0, codomain=None, axes=None):
Marco Selig's avatar
Marco Selig committed
818
819
820
821
822
823
824
825
826
827
828
829
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).
830
831
            axes: None, tuple
                Axes which should be smoothed
Marco Selig's avatar
Marco Selig committed
832
833
834
835
836
837
838

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """

839
        # Check sigma
Ultimanet's avatar
Ultimanet committed
840
        if sigma == 0:
841
            return x.copy()
Ultimanet's avatar
Ultimanet committed
842
843
844
        elif sigma == -1:
            about.infos.cprint(
                "INFO: Resetting sigma to sqrt(2)*max(dist).")
845
            sigma = np.sqrt(2) * np.max(self.distances)
846
        elif(sigma < 0):
Marco Selig's avatar
Marco Selig committed
847
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))
Ultimanet's avatar
Ultimanet committed
848

849
        # if a codomain was given...
850
        if codomain is not None:
851
            # ...check if it was suitable
Ultimanet's avatar
Ultimanet committed
852
853
            if not self.check_codomain(codomain):
                raise ValueError(about._errors.cstring(
854
855
                    "ERROR: the given codomain is not a compatible!"))
        else:
Ultimanet's avatar
Ultimanet committed
856
857
            codomain = self.get_codomain()

858
859
860
        x = self.calc_transform(x, codomain=codomain, axes=axes)
        x = codomain._calc_smooth_helper(x, sigma, axes=axes)
        x = codomain.calc_transform(x, codomain=self, axes=axes)
861
        return x
862

863
    def _calc_smooth_helper(self, x, sigma, axes=None):
864
        # multiply the gaussian kernel, etc...
865
866
        if axes is None:
            axes = range(len(x.shape))
867
868

        # if x is hermitian it remains hermitian during smoothing
csongor's avatar
csongor committed
869
870
        # TODO look at this later
        # if self.datamodel in RG_DISTRIBUTION_STRATEGIES:
871
        remember_hermitianQ = x.hermitian
Ultimanet's avatar
Ultimanet committed
872

873
874
875
876
        # Define the Gaussian kernel function
        gaussian = lambda x: np.exp(-2. * np.pi**2 * x**2 * sigma**2)

        # Define the variables in the dialect of the legacy smoothing.py
877
        nx = np.array(self.shape)
878
        dx = 1 / nx / self.distances
879
        # Multiply the data along each axis with suitable the gaussian kernel
Ultimanet's avatar
Ultimanet committed
880
        for i in range(len(nx)):
881
882
            # Prepare the exponent
            dk = 1. / nx[i] / dx[i]
Ultimanet's avatar
Ultimanet committed
883
            nk = nx[i]
884
            k = -0.5 * nk * dk + np.arange(nk) * dk
Ultimanet's avatar
Ultimanet committed
885
886
            if self.paradict['zerocenter'][i] == False:
                k = np.fft.fftshift(k)
887
            # compute the actual kernel vector
Ultimanet's avatar
Ultimanet committed
888
            gaussian_kernel_vector = gaussian(k)
889
            # blow up the vector to an array of shape (1,.,1,len(nk),1,.,1)
890
891
            blown_up_shape = [1, ] * len(x.shape)
            blown_up_shape[axes[i]] = len(gaussian_kernel_vector)
Ultimanet's avatar
Ultimanet committed
892
893
            gaussian_kernel_vector =\
                gaussian_kernel_vector.reshape(blown_up_shape)
894
895
            # apply the blown-up gaussian_kernel_vector
            x = x*gaussian_kernel_vector
896

897
        try:
898
            x.hermitian = remember_hermitianQ
899
900
        except AttributeError:
            pass
901

Ultimanet's avatar
Ultimanet committed
902
        return x
Marco Selig's avatar
Marco Selig committed
903

904
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.

            Other parameters
            ----------------
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
929
930
                Flag specifying if the spectral binning is performed on
                logarithmic
Marco Selig's avatar
Marco Selig committed
931
932
933
934
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
935
936
                Number of used spectral bins; if given `log` is set to
                ``False``;
Marco Selig's avatar
Marco Selig committed
937
938
939
940
941
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
942
                (default: None).
Marco Selig's avatar
Marco Selig committed
943
944

        """
Ultimanet's avatar
Ultimanet committed
945
946
        x = self.cast(x)

947
        # If self is a position space, delegate calc_power to its codomain.
948
        if not self.harmonic:
Marco Selig's avatar
Marco Selig committed
949
            try:
950
                codomain = kwargs['codomain']
Ultimanet's avatar
Ultimanet committed
951
952
            except(KeyError):
                codomain = self.get_codomain()
953

Ultimanet's avatar
Ultimanet committed
954
955
956
            y = self.calc_transform(x, codomain)
            kwargs.update({'codomain': self})
            return codomain.calc_power(y, **kwargs)
957
958
959
960
961

        # If some of the pindex, kindex or rho arrays are given explicitly,
        # favor them over those from the self.power_indices dictionary.
        # As the default value in kwargs.get(key, default) does NOT evaluate
        # lazy, a distinction of cases is necessary. Otherwise the
Ultima's avatar
Ultima committed
962
963
        # powerindices might be computed, although not needed
        if 'pindex' in kwargs and 'rho' in kwargs:
Ultimanet's avatar
Ultimanet committed
964
965
966
            pindex = kwargs.get('pindex')
            rho = kwargs.get('rho')
        else:
Ultima's avatar
Ultima committed
967
            power_indices = self.power_indices.get_index_dict(**kwargs)
Ultimanet's avatar
Ultimanet committed
968
969
            pindex = kwargs.get('pindex', power_indices['pindex'])
            rho = kwargs.get('rho', power_indices['rho'])
970

Ultimanet's avatar
Ultimanet committed
971
        fieldabs = abs(x)**2
972
        power_spectrum = np.zeros(rho.shape)
973

974
        power_spectrum = pindex.bincount(weights=fieldabs)
975
976

        # Divide out the degeneracy factor
Ultimanet's avatar
Ultimanet committed
977
978
        power_spectrum /= rho
        return power_spectrum
Marco Selig's avatar
Marco Selig committed
979

Ultima's avatar
Ultima committed
980
981
    def get_plot(self,x,title="",vmin=None,vmax=None,power=None,unit="",
                 norm=None,cmap=None,cbar=True,other=None,legend=False,mono=True,**kwargs):
Marco Selig's avatar
Marco Selig committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
            error : {float, numpy.ndarray, nifty.field}, *optional*
                Object indicating some confidence interval to be plotted
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
                Flag specifying if the spectral binning is performed on logarithmic
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
                Number of used spectral bins; if given `log` is set to ``False``;
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
                (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).

        """
Ultima's avatar
Ultima committed
1049

Marco Selig's avatar
Marco Selig committed
1050
1051
1052
1053
1054
1055
1056
1057
1058
        if(not pl.isinteractive())and(not bool(kwargs.get("save",False))):
            about.warnings.cprint("WARNING: interactive mode off.")

        naxes = (np.size(self.para)-1)//2
        if(power is None):
            power = bool(self.para[naxes])

        if(power):
            x = self.calc_power(x,**kwargs)
Ultima's avatar
Ultima committed
1059
1060
1061
1062
            try:
                x = x.get_full_data()
            except AttributeError:
                pass
Marco Selig's avatar
Marco Selig committed
1063

Ultima's avatar
Ultima committed
1064
1065
            fig = pl.figure(num=None,figsize=(6.4,4.8),dpi=None,
                            facecolor="none",edgecolor="none",frameon=False,FigureClass=pl.Figure)
Marco Selig's avatar
Marco Selig committed
1066
1067
1068
1069
1070
1071
1072
            ax0 = fig.add_axes([0.12,0.12,0.82,0.76])

            ## explicit kindex
            xaxes = kwargs.get("kindex",None)
            ## implicit kindex
            if(xaxes is None):
                try:
Ultima's avatar
Ultima committed
1073
1074
                    self.power_indices
                    kindex_supply_space = self
Marco Selig's avatar
Marco Selig committed
1075
                except:
Ultima's avatar
Ultima committed
1076
1077
1078
                    kindex_supply_space = self.get_codomain()

                xaxes = kindex_supply_space.power_indices.get_index_dict(
Ultima's avatar
Ultima committed
1079
                                                **kwargs)['kindex']
Ultima's avatar
Ultima committed
1080
1081
1082