iteration_controllers.py 12.9 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Philipp Arras's avatar
Philipp Arras committed
14
# Copyright(C) 2013-2020 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
19
import functools

20
21
import numpy as np

Martin Reinecke's avatar
Martin Reinecke committed
22
from ..logger import logger
Martin Reinecke's avatar
Martin Reinecke committed
23
from ..utilities import NiftyMeta
Martin Reinecke's avatar
Martin Reinecke committed
24
25


Martin Reinecke's avatar
Martin Reinecke committed
26
class IterationController(metaclass=NiftyMeta):
Martin Reinecke's avatar
Martin Reinecke committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    """The abstract base class for all iteration controllers.
    An iteration controller is an object that monitors the progress of a
    minimization iteration. At the begin of the minimization, its start()
    method is called with the energy object at the initial position.
    Afterwards, its check() method is called during every iteration step with
    the energy object describing the current position.
    Based on that information, the iteration controller has to decide whether
    iteration needs to progress further (in this case it returns CONTINUE), or
    if sufficient convergence has been reached (in this case it returns
    CONVERGED), or if some error has been detected (then it returns ERROR).

    The concrete convergence criteria can be chosen by inheriting from this
    class; the implementer has full flexibility to use whichever criteria are
    appropriate for a particular problem - as long as they can be computed from
    the information passed to the controller during the iteration process.
    """

    CONVERGED, CONTINUE, ERROR = list(range(3))

Philipp Arras's avatar
Philipp Arras committed
46
47
48
    def __init__(self):
        self._history = None

Martin Reinecke's avatar
Martin Reinecke committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    def start(self, energy):
        """Starts the iteration.

        Parameters
        ----------
        energy : Energy object
           Energy object at the start of the iteration

        Returns
        -------
        status : integer status, can be CONVERGED, CONTINUE or ERROR
        """
        raise NotImplementedError

    def check(self, energy):
        """Checks the state of the iteration. Called after every step.

        Parameters
        ----------
        energy : Energy object
           Energy object at the start of the iteration

        Returns
        -------
        status : integer status, can be CONVERGED, CONTINUE or ERROR
        """
        raise NotImplementedError

Philipp Arras's avatar
Philipp Arras committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    def pop_history(self):
        """FIXME"""
        if self._history is None:
            raise RuntimeError('No history was taken')
        res = self._history
        self._history = []
        return res

    def activate_and_reset_logging(self):
        """FIXME"""
        self._history = []


def append_history(func):
    """FIXME"""
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if args[0]._history is not None:
            args[0]._history.append(args[1].value)
        return func(*args, **kwargs)
    return wrapper

Martin Reinecke's avatar
Martin Reinecke committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

class GradientNormController(IterationController):
    """An iteration controller checking (mainly) the L2 gradient norm.

    Parameters
    ----------
    tol_abs_gradnorm : float, optional
        If the L2 norm of the energy gradient is below this value, the
        convergence counter will be increased in this iteration.
    tol_rel_gradnorm : float, optional
        If the L2 norm of the energy gradient divided by its initial L2 norm
        is below this value, the convergence counter will be increased in this
        iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

    def __init__(self, tol_abs_gradnorm=None, tol_rel_gradnorm=None,
                 convergence_level=1, iteration_limit=None, name=None):
Philipp Arras's avatar
Philipp Arras committed
124
        super(GradientNormController, self).__init__()
Martin Reinecke's avatar
Martin Reinecke committed
125
126
127
128
129
130
        self._tol_abs_gradnorm = tol_abs_gradnorm
        self._tol_rel_gradnorm = tol_rel_gradnorm
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

Philipp Arras's avatar
Philipp Arras committed
131
    @append_history
Martin Reinecke's avatar
Martin Reinecke committed
132
133
134
135
136
137
138
139
    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        if self._tol_rel_gradnorm is not None:
            self._tol_rel_gradnorm_now = self._tol_rel_gradnorm \
                                       * energy.gradient_norm
        return self.check(energy)

Philipp Arras's avatar
Philipp Arras committed
140
    @append_history
Martin Reinecke's avatar
Martin Reinecke committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    def check(self, energy):
        self._itcount += 1

        inclvl = False
        if self._tol_abs_gradnorm is not None:
            if energy.gradient_norm <= self._tol_abs_gradnorm:
                inclvl = True
        if self._tol_rel_gradnorm is not None:
            if energy.gradient_norm <= self._tol_rel_gradnorm_now:
                inclvl = True
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} gradnorm={:.2E} clvl={}"
                .format(self._name, self._itcount, energy.value,
                        energy.gradient_norm, self._ccount))
Martin Reinecke's avatar
Martin Reinecke committed
162
163
164
165
166

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
167
                    "{}Iteration limit reached. Assuming convergence"
Martin Reinecke's avatar
Martin Reinecke committed
168
169
170
171
172
173
174
175
176
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE


class GradInfNormController(IterationController):
Martin Reinecke's avatar
Martin Reinecke committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    """An iteration controller checking (mainly) the L_infinity gradient norm.

    Parameters
    ----------
    tol : float
        If the L_infinity norm of the energy gradient is below this value, the
        convergence counter will be increased in this iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

    def __init__(self, tol, convergence_level=1, iteration_limit=None,
Martin Reinecke's avatar
Martin Reinecke committed
195
                 name=None):
Philipp Arras's avatar
Philipp Arras committed
196
        super(GradInfNormController, self).__init__()
Martin Reinecke's avatar
Martin Reinecke committed
197
198
199
200
201
        self._tol = tol
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

Philipp Arras's avatar
Philipp Arras committed
202
    @append_history
Martin Reinecke's avatar
Martin Reinecke committed
203
204
205
206
207
    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        return self.check(energy)

Philipp Arras's avatar
Philipp Arras committed
208
    @append_history
Martin Reinecke's avatar
Martin Reinecke committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def check(self, energy):
        self._itcount += 1

        crit = energy.gradient.norm(np.inf) / abs(energy.value)
        if self._tol is not None and crit <= self._tol:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} crit={:.2E} clvl={}"
                .format(self._name, self._itcount, energy.value,
                        crit, self._ccount))
Martin Reinecke's avatar
Martin Reinecke committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE


class DeltaEnergyController(IterationController):
Martin Reinecke's avatar
Martin Reinecke committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    """An iteration controller checking (mainly) the energy change from one
    iteration to the next.

    Parameters
    ----------
    tol_rel_deltaE : float
        If the difference between the last and current energies divided by
        the current energy is below this value, the convergence counter will
        be increased in this iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

Martin Reinecke's avatar
Martin Reinecke committed
258
259
    def __init__(self, tol_rel_deltaE, convergence_level=1,
                 iteration_limit=None, name=None):
Philipp Arras's avatar
Philipp Arras committed
260
        super(DeltaEnergyController, self).__init__()
Martin Reinecke's avatar
Martin Reinecke committed
261
262
263
264
265
        self._tol_rel_deltaE = tol_rel_deltaE
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

Philipp Arras's avatar
Philipp Arras committed
266
    @append_history
Martin Reinecke's avatar
Martin Reinecke committed
267
268
269
270
271
272
    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        self._Eold = 0.
        return self.check(energy)

Philipp Arras's avatar
Philipp Arras committed
273
    @append_history
Martin Reinecke's avatar
Martin Reinecke committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    def check(self, energy):
        self._itcount += 1

        inclvl = False
        Eval = energy.value
        rel = abs(self._Eold-Eval)/max(abs(self._Eold), abs(Eval))
        if self._itcount > 0:
            if rel < self._tol_rel_deltaE:
                inclvl = True
        self._Eold = Eval
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} reldiff={:.6E} clvl={}"
                .format(self._name, self._itcount, Eval, rel, self._ccount))

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE
Philipp Arras's avatar
Philipp Arras committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327


class AbsDeltaEnergyController(IterationController):
    """An iteration controller checking (mainly) the energy change from one
    iteration to the next.

    Parameters
    ----------
    deltaE : float
        If the difference between the last and current energies is below this
        value, the convergence counter will be increased in this iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

    def __init__(self, deltaE, convergence_level=1, iteration_limit=None,
328
                 name=None):
Philipp Arras's avatar
Philipp Arras committed
329
        super(AbsDeltaEnergyController, self).__init__()
Philipp Arras's avatar
Philipp Arras committed
330
331
332
333
334
        self._deltaE = deltaE
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

Philipp Arras's avatar
Philipp Arras committed
335
    @append_history
Philipp Arras's avatar
Philipp Arras committed
336
337
338
339
340
341
    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        self._Eold = 0.
        return self.check(energy)

Philipp Arras's avatar
Philipp Arras committed
342
    @append_history
Philipp Arras's avatar
Philipp Arras committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    def check(self, energy):
        self._itcount += 1

        inclvl = False
        Eval = energy.value
        diff = abs(self._Eold-Eval)
        if self._itcount > 0:
            if diff < self._deltaE:
                inclvl = True
        self._Eold = Eval
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
361
362
363
                "{}: Iteration #{} energy={:.6E} diff={:.6E} crit={:.1E} clvl={}"
                .format(self._name, self._itcount, Eval, diff, self._deltaE,
                        self._ccount))
Philipp Arras's avatar
Philipp Arras committed
364
365
366
367
368
369
370
371
372
373
374
375

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE