distributed_do.py 17.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20
21
22

import sys

23
24
import numpy as np
from mpi4py import MPI
Philipp Arras's avatar
Philipp Arras committed
25
26
27

from ..compat import *
from .random import Random
28

Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
35
__all__ = ["ntask", "rank", "master", "local_shape", "data_object", "full",
           "empty", "zeros", "ones", "empty_like", "vdot", "exp",
           "log", "tanh", "sqrt", "from_object", "from_random",
           "local_data", "ibegin", "ibegin_from_shape", "np_allreduce_sum",
           "np_allreduce_min", "np_allreduce_max",
           "distaxis", "from_local_data", "from_global_data", "to_global_data",
           "redistribute", "default_distaxis", "is_numpy",
36
           "lock", "locked", "uniform_full", "transpose", "to_global_data_rw"]
Martin Reinecke's avatar
Martin Reinecke committed
37

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
38
39
40
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
41
master = (rank == 0)
42
43


Martin Reinecke's avatar
Martin Reinecke committed
44
45
46
47
def is_numpy():
    return False


Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
48
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
49
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
50

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
51
52

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
53
54
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
55
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
56
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
57
58
    return lo, hi

59

60
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
61
    if len(shape) == 0 or distaxis == -1:
62
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
63
64
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
65
66
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
67

68
69
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
70
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
71
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
72
            distaxis = -1
Martin Reinecke's avatar
Martin Reinecke committed
73
74
            if not isinstance(data, np.ndarray):
                data = np.full((), data)
75
76
        self._distaxis = distaxis
        self._data = data
Martin Reinecke's avatar
Martin Reinecke committed
77
78
        if local_shape(self._shape, self._distaxis) != self._data.shape:
            raise ValueError("shape mismatch")
79

80
81
82
    def copy(self):
        return data_object(self._shape, self._data.copy(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#     def _sanity_checks(self):
#         # check whether the distaxis is consistent
#         if self._distaxis < -1 or self._distaxis >= len(self._shape):
#             raise ValueError
#         itmp = np.array(self._distaxis)
#         otmp = np.empty(ntask, dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         if np.any(otmp != self._distaxis):
#             raise ValueError
#         # check whether the global shape is consistent
#         itmp = np.array(self._shape)
#         otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         for i in range(ntask):
#             if np.any(otmp[i, :] != self._shape):
#                 raise ValueError
#         # check shape of local data
#         if self._distaxis < 0:
#             if self._data.shape != self._shape:
#                 raise ValueError
#         else:
#             itmp = np.array(self._shape)
#             itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
#                                               ntask, rank)
#             if np.any(self._data.shape != itmp):
#                 raise ValueError
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
124
        return data_object(self._shape, self._data.real, self._distaxis)
125
126
127

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
128
        return data_object(self._shape, self._data.imag, self._distaxis)
129

Martin Reinecke's avatar
Martin Reinecke committed
130
131
132
133
134
135
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
136
    def _contraction_helper(self, op, mpiop, axis):
137
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
138
            if len(axis) == len(self._data.shape):
139
140
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
141
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
142
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
143
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
144
145
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
146
            return res2[()]
147
148

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
149
150
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
151
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
152
            return from_global_data(res2, distaxis=0)
153
        else:
Martin Reinecke's avatar
Martin Reinecke committed
154
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
155
156
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
157
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
158
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
159
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
160
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
161
162
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
163
164
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
165
166
167

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
168

169
170
171
    def prod(self, axis=None):
        return self._contraction_helper("prod", MPI.PROD, axis)

172
173
#    def min(self, axis=None):
#        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
174

175
176
#    def max(self, axis=None):
#        return self._contraction_helper("max", MPI.MAX, axis)
177

178
179
180
181
182
183
    def mean(self, axis=None):
        if axis is None:
            sz = self.size
        else:
            sz = reduce(lambda x, y: x*y, [self.shape[i] for i in axis])
        return self.sum(axis)/sz
Martin Reinecke's avatar
Martin Reinecke committed
184

185
186
    def std(self, axis=None):
        return np.sqrt(self.var(axis))
Martin Reinecke's avatar
Martin Reinecke committed
187

Martin Reinecke's avatar
Martin Reinecke committed
188
    # FIXME: to be improved!
189
190
191
    def var(self, axis=None):
        if axis is not None and len(axis) != len(self.shape):
            raise ValueError("functionality not yet supported")
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
192
193
        return (abs(self-self.mean())**2).mean()

194
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
195
        a = self
196
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
197
            b = other
198
199
200
201
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
202
203
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
204
205
206
207
208
        elif np.isscalar(other):
            a = a._data
            b = other
        else:
            return NotImplemented
209
210

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
211
212
213
214
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
215
216

    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
217
        return data_object(self._shape, -self._data, self._distaxis)
218
219

    def __abs__(self):
220
        return data_object(self._shape, abs(self._data), self._distaxis)
221
222

    def all(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
223
        return self.sum() == self.size
224
225

    def any(self):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
226
        return self.sum() != 0
227

Martin Reinecke's avatar
fixes    
Martin Reinecke committed
228
229
    def fill(self, value):
        self._data.fill(value)
230

231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
for op in ["__add__", "__radd__", "__iadd__",
           "__sub__", "__rsub__", "__isub__",
           "__mul__", "__rmul__", "__imul__",
           "__div__", "__rdiv__", "__idiv__",
           "__truediv__", "__rtruediv__", "__itruediv__",
           "__floordiv__", "__rfloordiv__", "__ifloordiv__",
           "__pow__", "__rpow__", "__ipow__",
           "__lt__", "__le__", "__gt__", "__ge__", "__eq__", "__ne__"]:
    def func(op):
        def func2(self, other):
            return self._binary_helper(other, op=op)
        return func2
    setattr(data_object, op, func(op))

Martin Reinecke's avatar
Martin Reinecke committed
246

Martin Reinecke's avatar
Martin Reinecke committed
247
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
248
249
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
250
251


Martin Reinecke's avatar
Martin Reinecke committed
252
253
254
255
256
257
def uniform_full(shape, fill_value, dtype=None, distaxis=0):
    return data_object(
        shape, np.broadcast_to(fill_value, local_shape(shape, distaxis)),
        distaxis)


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
258
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
259
260
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
261
262


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
263
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
264
265
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
266
267


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
268
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
269
270
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
271
272
273
274
275
276
277


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
278
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
279
    if a._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
280
        return tmp[()]
Martin Reinecke's avatar
Martin Reinecke committed
281
282
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
283
    return res[()]
284
285
286


def _math_helper(x, function, out):
287
    function = getattr(np, function)
288
289
290
291
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
292
        return data_object(x.shape, function(x._data), x._distaxis)
293
294


295
_current_module = sys.modules[__name__]
Martin Reinecke's avatar
Martin Reinecke committed
296

297
for f in ["sqrt", "exp", "log", "tanh", "conjugate"]:
298
299
300
301
302
    def func(f):
        def func2(x, out=None):
            return _math_helper(x, f, out)
        return func2
    setattr(_current_module, f, func(f))
303
304


Martin Reinecke's avatar
Martin Reinecke committed
305
306
307
308
309
310
311
312
313
314
315
316
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    data = np.array(object._data, dtype=dtype, copy=copy)
    if set_locked:
Martin Reinecke's avatar
fix    
Martin Reinecke committed
317
        data.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
318
    return data_object(object._shape, data, distaxis=object._distaxis)
319
320


Martin Reinecke's avatar
Martin Reinecke committed
321
322
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
323
324
325
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
326
def from_random(random_type, shape, dtype=np.float64, **kwargs):
327
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
328
    if len(shape) == 0:
Martin Reinecke's avatar
Martin Reinecke committed
329
330
331
        ldat = generator_function(dtype=dtype, shape=shape, **kwargs)
        ldat = _comm.bcast(ldat)
        return from_local_data(shape, ldat, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
332
333
334
335
336
337
338
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
339

Martin Reinecke's avatar
Martin Reinecke committed
340

Martin Reinecke's avatar
Martin Reinecke committed
341
342
343
344
def local_data(arr):
    return arr._data


345
346
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
347
    if distaxis < 0:
348
349
350
351
352
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
353
354
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
355
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
356
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
357
358


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
359
360
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
361
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
362
    return res
Martin Reinecke's avatar
Martin Reinecke committed
363
364


365
366
367
368
369
370
def np_allreduce_min(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MIN)
    return res


Martin Reinecke's avatar
fixes    
Martin Reinecke committed
371
372
373
374
375
376
def np_allreduce_max(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MAX)
    return res


Martin Reinecke's avatar
Martin Reinecke committed
377
378
379
380
def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
381
def from_local_data(shape, arr, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
382
383
384
    return data_object(shape, arr, distaxis)


385
386
387
def from_global_data(arr, sum_up=False, distaxis=0):
    if sum_up:
        arr = np_allreduce_sum(arr)
Martin Reinecke's avatar
Martin Reinecke committed
388
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
389
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
390
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
391
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
392
    sl[distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
393
394
395
    return data_object(arr.shape, arr[sl], distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
396
397
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
398
399
400
401
402
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


403
404
405
406
407
408
409
def to_global_data_rw(arr):
    if arr._distaxis == -1:
        return arr._data.copy()
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
410
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
411
412
413
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
414
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
415
416
417
418
419
420
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
421
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
422
423
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
424
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
425
                break
Martin Reinecke's avatar
Martin Reinecke committed
426

Martin Reinecke's avatar
Martin Reinecke committed
427
    if arr._distaxis == -1:  # all data available, just pick the proper subset
428
        return from_global_data(arr._data, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
429
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
430
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
431
432
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
433
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
434
435
436
437
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
438
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
439
440
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
441
442
443
444
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
445
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
446
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
447

Martin Reinecke's avatar
Martin Reinecke committed
448
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
449
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
450
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
451
452
453
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
454
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
455
456
457
458
459
460
461
462
463
464
465
466
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
467
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
468
469
470
471
472
473
            ssz[i] = ssz0*(hi-lo)
            sbuf[ofs:ofs+ssz[i]] = arr._data[sslice].flat
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
474
475
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
476
477
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
478
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
479
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
480
481
482
483
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
Martin Reinecke's avatar
Martin Reinecke committed
484
        arrnew = np.empty(local_shape(arr.shape, dist), dtype=arr.dtype)
Martin Reinecke's avatar
Martin Reinecke committed
485
486
487
488
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
489
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
490
            sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
491
            arrnew[rslice].flat = rbuf[ofs:ofs+sz]
Martin Reinecke's avatar
Martin Reinecke committed
492
            ofs += sz
Martin Reinecke's avatar
Martin Reinecke committed
493
        arrnew = from_local_data(arr.shape, arrnew, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
494
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
495
496


Martin Reinecke's avatar
Martin Reinecke committed
497
498
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
499
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
500
501
502
503
504
505
506
507
508
509
510
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
511
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
512
513
514
515
516
517
518
519
520
521
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
522
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
523
524
    arrnew = np.empty((sz2, arr.shape[0]), dtype=arr.dtype)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
525
526
527
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
528
        arrnew[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
529
        ofs += sz
530
    return from_local_data((arr.shape[1], arr.shape[0]), arrnew, 0)
Martin Reinecke's avatar
Martin Reinecke committed
531
532


Martin Reinecke's avatar
Martin Reinecke committed
533
534
def default_distaxis():
    return 0
535
536
537
538
539
540
541
542


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable