getting_started_1.py 4.23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
20
import nifty5 as ift
import numpy as np
21
22


Philipp Arras's avatar
Philipp Arras committed
23
def make_chess_mask(position_space):
24
25
26
    mask = np.ones(position_space.shape)
    for i in range(4):
        for j in range(4):
27
            if (i+j) % 2 == 0:
Philipp Arras's avatar
Philipp Arras committed
28
                mask[i*128//4:(i+1)*128//4, j*128//4:(j+1)*128//4] = 0
29
30
    return mask

Philipp Arras's avatar
Philipp Arras committed
31

32
def make_random_mask():
33
    mask = ift.from_random('pm1', position_space)
34
    mask = (mask+1)/2
Martin Reinecke's avatar
Martin Reinecke committed
35
    return mask.to_global_data()
36

Philipp Arras's avatar
Philipp Arras committed
37

Philipp Arras's avatar
Philipp Arras committed
38
39
40
41
42
43
def mask_to_nan(mask, field):
    masked_data = field.local_data.copy()
    masked_data[mask.local_data == 0] = np.nan
    return ift.from_local_data(field.domain, masked_data)


44
if __name__ == '__main__':
Philipp Arras's avatar
Philipp Arras committed
45
    np.random.seed(42)
Philipp Arras's avatar
Philipp Arras committed
46
47
    # FIXME description of the tutorial

48
    # Choose problem geometry and masking
Martin Reinecke's avatar
Martin Reinecke committed
49
    mode = 1
Philipp Arras's avatar
Philipp Arras committed
50
51
52
53
54
55
56
57
58
59
60
61
    if mode == 0:
        # One dimensional regular grid
        position_space = ift.RGSpace([1024])
        mask = np.ones(position_space.shape)
    elif mode == 1:
        # Two dimensional regular grid with chess mask
        position_space = ift.RGSpace([128, 128])
        mask = make_chess_mask(position_space)
    else:
        # Sphere with half of its locations randomly masked
        position_space = ift.HPSpace(128)
        mask = make_random_mask()
62

63
64
    harmonic_space = position_space.get_default_codomain()
    HT = ift.HarmonicTransformOperator(harmonic_space, target=position_space)
65

Philipp Arras's avatar
Philipp Arras committed
66
    # Set correlation structure with a power spectrum and build
67
    # prior correlation covariance
68
69
70
71
72
    def power_spectrum(k):
        return 100. / (20.+k**3)
    power_space = ift.PowerSpace(harmonic_space)
    PD = ift.PowerDistributor(harmonic_space, power_space)
    prior_correlation_structure = PD(ift.PS_field(power_space, power_spectrum))
73

74
    S = ift.DiagonalOperator(prior_correlation_structure)
75

Philipp Arras's avatar
Philipp Arras committed
76
    # Build instrument response consisting of a discretization, mask
77
    # and harmonic transformaion
78
    GR = ift.GeometryRemover(position_space)
79
    mask = ift.Field.from_global_data(position_space, mask)
80
    Mask = ift.DiagonalOperator(mask)
81
    R = GR.chain(Mask).chain(HT)
82
83
84

    data_space = GR.target

Philipp Arras's avatar
Philipp Arras committed
85
    # Set the noise covariance
86
87
    noise = 5.
    N = ift.ScalingOperator(noise, data_space)
88

Philipp Arras's avatar
Philipp Arras committed
89
    # Create mock data
90
91
92
    MOCK_SIGNAL = S.draw_sample()
    MOCK_NOISE = N.draw_sample()
    data = R(MOCK_SIGNAL) + MOCK_NOISE
93

Philipp Arras's avatar
Philipp Arras committed
94
    # Build propagator D and information source j
95
    j = R.adjoint_times(N.inverse_times(data))
96
    D_inv = R.adjoint.chain(N.inverse).chain(R) + S.inverse
Philipp Arras's avatar
Philipp Arras committed
97
    # Make it invertible
98
    IC = ift.GradientNormController(iteration_limit=500, tol_abs_gradnorm=1e-3)
99
    D = ift.InversionEnabler(D_inv, IC, approximation=S.inverse).inverse
100
101
102
103

    # WIENER FILTER
    m = D(j)

104
    # PLOTTING
Philipp Arras's avatar
Philipp Arras committed
105
106
    rg = isinstance(position_space, ift.RGSpace)
    if rg and len(position_space.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
107
        ift.plot([HT(MOCK_SIGNAL), GR.adjoint(data), HT(m)],
Philipp Arras's avatar
Philipp Arras committed
108
                 label=['Mock signal', 'Data', 'Reconstruction'],
Martin Reinecke's avatar
Martin Reinecke committed
109
                 alpha=[1, .3, 1])
Philipp Arras's avatar
Philipp Arras committed
110
        ift.plot(mask_to_nan(mask, HT(m-MOCK_SIGNAL)), title='Residuals')
Martin Reinecke's avatar
Martin Reinecke committed
111
112
        ift.plot_finish(nx=2, ny=1, xsize=10, ysize=4,
                        title="getting_started_1")
Philipp Arras's avatar
Philipp Arras committed
113
    else:
Martin Reinecke's avatar
Martin Reinecke committed
114
        ift.plot(HT(MOCK_SIGNAL), title='Mock Signal')
115
116
        ift.plot(mask_to_nan(mask, (GR.chain(Mask)).adjoint(data)),
                 title='Data')
Martin Reinecke's avatar
Martin Reinecke committed
117
        ift.plot(HT(m), title='Reconstruction')
Philipp Arras's avatar
Philipp Arras committed
118
        ift.plot(mask_to_nan(mask, HT(m-MOCK_SIGNAL)), title='Residuals')
Martin Reinecke's avatar
merge    
Martin Reinecke committed
119
        ift.plot_finish(nx=2, ny=2, xsize=10, ysize=10,
Martin Reinecke's avatar
Martin Reinecke committed
120
                        title="getting_started_1")